• Title/Summary/Keyword: Turbo blade

Search Result 78, Processing Time 0.025 seconds

A Study on the Development and Application of a Design Program for Centrifugal Turbo Fan (원심 터보홴 설계용 프로그램의 개발 및 응용에 대한 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.71-79
    • /
    • 2016
  • This paper introduces the design method of the centrifugal turbo fan and the process of developing the design program of it. The developed design program confirmed the applicability by experimental performance data. Here, we proposed new velocity coefficients and considered various losses such as impeller inlet loss, vane passage flow loss, casing pressure loss, recirculation loss power, and disk friction loss power. Especially, the inlet and outlet widths of the impeller were newly determined by reflecting the experimental results. As a result, this fan design program shows a good performance result regardless of the types of impeller and is expected to be a very useful design tool.

Numerical Study of Turbine Blade Surface Gas Temperature with Various RPM and Blade Edge Shape (터빈 블레이드 회전수 변화와 터빈 블레이드 엣지 형상 변화에 따른 표면 가스온도 분포 해석)

  • Lee, In-Chul;Byun, Yong-Woo;Koo, Ja-Ye;Lee, Sang-Do;Kim, Kui-Soon;Moon, In-Sang;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.49-52
    • /
    • 2008
  • The numerical analysis for gas temperature of turbine blade surface has been performed to investigate development of temperature with various blade edge shape. Two different types of the turbine which one is "Sharp" edge and the other is "Round" edge was modeled. Computations have been carried out several turbine rotational speeds in the range from 0 to 10,000 rpm for the each types of turbine edge shape. As a result, the more rotational speed of turbine increased, the more turbine blade's temperature decreased. It is also found that the surface temperature of turbine blades for sharp type edge were lower than the round type edge.

  • PDF

Surface Gas Temperature of Turbine Blade by Hot Gas Stream of Pyro Starter in Operation Condition (파이로 시동기의 고온 가스에 의한 터빈 블레이드의 표면 가스온도 발달과정 해석)

  • Lee, In-Chul;Kim, Jin-Hong;Koo, Ja-Ye;Lee, Sang-Do;Kim, Kui-Soon;Moon, In-Sang;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.63-67
    • /
    • 2007
  • The high pressure turbopump carries out supplying the oxidizer in the liquid propulsion rocket in the combustion chamber. Because an LRE requires a very short starting time , the turbine at the turbopump experiences high torque that was produced by the high pressure and the high temperature. The purpose of this study is to evaluate a turbine blade surface temperature profiles at initial starting 0 ${\sim}$ 0.5 sec. Using $Fine^{Tm}$/turbo, three dimensional Baldwin-Lomax turbulence models are used for numerically analysis. The turbine is composed of 108 blades total, but only 7 rotors were considered because of periodic symmetry effect. Because of interaction with a bow shock on the suction surface, the boundary layer separates from suction surface at inner area of turbine blade. The averaged temperature of the turbine blade tip at 1000 rpm is higher than that of 9000 rpm. Especially at 1000 ${\sim}$ 9000 rpm, temperatures increases on the hub side of the turbine blade tip. Moreover at 9000 rpm, the temperatures from the hub to the shroud of the blade tip increase as well.

  • PDF

Reverse Flow on Blade-Surface of Propeller Fan (프로펠러 홴 날개 위의 역류 유동)

  • Kim, Jae Won;Nam, Im Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.7-14
    • /
    • 2001
  • Design and development of a propeller fan for a cooling tower have been accomplished by both numerical prediction of performance and experimental validation with a wind tunnel. Main interest lies on blade geometry of a fan for optimal design of aerodynamic performance. A commercial program, Fine/Turbo used for the present numerical estimation, gives us engineering information such as flow details near the blades and flow rate of the system. The numerical results are compared with precise experimental output and show good agreement in comparison between the two data. Also new proposed model of a blade shows improved performance relative to present running model in market.

  • PDF

Forced Vibration and Loads Analysis of Large-scale Wind Turbine Blades Considering Blade Bending and Torsion Coupling (굽힘 및 비틀림 연성 효과를 고려한 대형 풍력 터빈 블레이드의 강제 진동 및 하중 해석)

  • Kim, Kyung-Taek;Park, Jong-Po;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.256-263
    • /
    • 2008
  • The assumed modes method is developed to derive a set of linear differential equations describing the motion of a flexible wind turbine blade and to propose an approach to investigate the forced responses result from various wind excitations. In this work, we have adopted Euler beam theory and considered that the root of the blade is clamped at the rigid hub. And the aerodynamic parameters and forces are determined based on Blade Element Momentum (BEM) theory and quasi-steady airfoil aerodynamics. Numerical calculations show that this method gives good results and it can be used fur modeling and the forced vibration analysis including the coupling effect of wind-turbine blades, as well as turbo-machinery blades, aircraft propellers or helicopter rotor blades which may be considered as straight non-uniform beams with built-in pre-twist.

  • PDF

Flow Instability Assessment Occurring in Low Flow Rate Region According to the Change of a Centrifugal Compressor Impeller Shape (원심압축기 임펠러의 형상 변화에 따른 저유량 영역에서 발생하는 불안정 유동 평가)

  • Jo, Seong Hwi;Kim, Hong Jip;Lee, Myong Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • The objective of present study is to assess the performance of the first stage compressor in a total 3-stage 5000 HP-level turbo compressor. CFD commercial code, CFX has been used to predict three-dimensional flow characteristics inside of the impeller. Shear Stress Transport (SST) model has been used to simulate turbulent flows through Reynolds-averaged Navier-Stokes (RANS) equations. Grid dependency has been also checked to get optimal grid distribution. Numerical results have been compared with the experimental test results to elucidate performance characteristics of the present compressor. In addition, flow characteristics of the impeller only have been studied for various blade configurations. Angular offset in leading edge of the blade has been selected for the optimal blade design. Performance characteristics in region of low mass flow rate and high pressure ratio between the impeller entrance and exit have been investigated for the selection of optimal blade design. Also, flow instability such as stall phenomena has been studied and anti-stall characteristics have been checked for various blade configurations in the operational window.

Vibration Analysis of a Turbo-Machinery Blade Considering Rotating and Flow Effect (회전 및 유동효과를 고려한 터보기계 블레이드의 진동해석)

  • Joung, Kyu-Kang;Shin, Seung-Hoon;Park, Hee-Yong;Kim, Dong-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.519-522
    • /
    • 2010
  • Flow-induced vibration analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics has been developed in order to investigate detailed dynamic responses of designed compressor blades. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF

Performance Characteristics of a Turbo Blower Having the Various Shapes of a Volute Casing (볼류트 케이싱 형상에 따른 터보블로어 성능특성 고찰)

  • Jang, Choon-Man;Yang, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.843-850
    • /
    • 2010
  • This In this paper, we describe the performance characteristics of a turbo blower as a function of the shape of the volute casing: expansion diameter and width of the volute casing. The turbo blower considered in the present study is mainly used in a refuse collection system. The flow characteristics inside the turbo blower were analyzed by a three-dimensional Navier-Stokes solver and compared with experimental results. The distributions of pressure and efficiency obtained by numerical simulation were in good agreement with those determined experimentally. Throughout the numerical simulation of the turbo blower, the blower performance was enhanced by decreasing the local losses in the blade passage and the outlet flow. The efficiency and pressure for the design flow condition were enhanced by about 3% and 2%, respectively, compared to the efficiency and pressure of the reference blower. Detailed flow analysis was performed using the results of the numerical simulation

A Numerical Study on Flows in a Rotating Serpentine Passage (회전하는 ㄹ자형 관내의 유동에 관한 수치해석 연구)

  • 허남건;조원국;윤성영;윤성영;김광호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1621-1632
    • /
    • 1993
  • A numerical simulation is carried out on flows in a rotating serpentine flow passage, which models a cooling passage in a gas turbine blade, by using a 3-D FVM based TURBO-D program. When it is rotating, the flow field exhibits quite different aspects due to the effect of the Coriolis force. Especially the secondary flow field appearing in the cross-sectional area is very complex because of the combined effect of the Coriolis force and the centrifugal force in the curved area. Local Nusselt numbers are also obtained based on the Reynolds analogy and compared with the published experimental data showing a good agreement. The results of the present study can be applied to the design of cooling passages of a gas turbine blade.

Numerical Calculation of Turbulent Boundary Layer on Rotating Helical Blades (회전(回轉)하는 나선(螺旋)날개 위에서의 경계층(境界層) 해석(解析))

  • Keon-Je,Oh;Shin-Hyoung,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.9-17
    • /
    • 1984
  • Laminar and turbulent boundary layers on a rotating sector and a helical blade are calculated by differential method. The estimation of three dimensional viscous flows provide quite useful informations for the design of propellers and turbo-machinery. A general method of calculation is presented in this paper. Calculated laminar boundary layer on a sector shows smooth development of flows from Blasius' solution at the leading edge to von Karman's solution of a rotating disk at the down-stream. Eddy viscosity model is adopted for the calculation of turbulent flows. Turbulent flows on a rotating blade show similar characters as laminar flows. But cross-flow angle of turbulent flows are reduced in comparison with laminar boundary layers. Effects of rotation make flow structures significantly different from two-dimensional flows. In the range of Reynolds number of model scale propellers, large portion of the blade are still in the transition region from laminar to turbulent flows. Therefore viscous flow pattern might be quite different on the blade of model propeller. The present method of calculation is to be useful for the research of scale effects, cavitation, and roughness effects of propeller blades.

  • PDF