• Title/Summary/Keyword: Turbine-based Combined Cycle

Search Result 62, Processing Time 0.029 seconds

Fatigue Design of Mooring Lines of Floating Type Combined Renewable Energy Platforms

  • Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.171-179
    • /
    • 2011
  • This paper presents the concept design procedure of a floating-type combined renewable energy platform based on hydrodynamic analyses and is focused on the fatigue design of taut-type mooring lines of the platform. Two types of combined renewable energy platforms are considered: a combination of wind turbine, wave turbine and photovoltaic energy plant and a combination of wind turbine, current turbine and photovoltaic energy plant. The basic configurations are conceptually determined from the understanding of floating offshore plants, while the main dimensions have been determined based on a hydrostatic calculation. Fully coupled hydrodynamic analyses have been carried out to identify the motion characteristics of the floating body and the tension histories of the mooring lines. The tension history is used for the fatigue life prediction based on the rain-flow cycle counting method. For the fatigue life prediction, tension life curves from API and the Palmgren-Miner rule are employed.

An evaluation of power conversion systems for land-based nuclear microreactors: Can aeroderivative engines facilitate near-term deployment?

  • Guillen, D.P.;McDaniel, P.J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1482-1494
    • /
    • 2022
  • Power conversion cycles (Subcritical Steam, Supercritical Steam, Open Air Brayton, Recuperated Air Brayton, Combined Cycle, Closed Brayton Supercritical CO2 (sCO2), and Stirling) are evaluated for land-based nuclear microreactors based on technical maturity, system efficiency, size, cost and maintainability, safety implications, and siting considerations. Based upon these criteria, Air Brayton systems were selected for further evaluation. A brief history of the development and applications of Brayton power systems is given, followed by a description of how these thermal-to-electrical energy conversion systems might be integrated with a nuclear microreactor. Modeling is performed for optimized cycles operating at 3 MW(e) with turbine inlet temperatures of 500 ℃, 650 ℃ and 850 ℃, corresponding to: a) sodium fast, b) molten salt or heat pipe, and c) helium or sodium thermal reactors, coupled with three types of Brayton power conversion units (PCUs): 1) simple open-cycle gas turbine, 2) recuperated open-cycle gas turbine, and 3) recuperated and intercooled open-cycle gas turbine. Aeroderivative turboshaft engines employing the simple Brayton cycle and two industrial gas turbine engines employing recuperated air Brayton cycles are also analyzed. These engines offer mature technology that can facilitate near-term deployment with a modest improvement in efficiency.

Numerical Analysis of Turbulent Combustion and Emissions in an HRSG System (가스터빈 열 회수 증기 발생기의 난류연소 해석과 배기가스 예측 및 검증)

  • Jang, Jihoon;Han, Karam;Park, Hoyoung;Lee, Wook-Ryun;Huh, Kangyul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The combined cycle plant is an integration of gas turbine and steam turbine, combining the advantages of both cycles. It recovers the heat energy from gas turbine exhaust to use it to generate steam. The heat recovery steam generator plays a crucial role in combined cycle plants, providing the link between the gas turbine and the steam turbine. Simulation of the performance of the HRSG is required to study its effect on the entire cycle and system. Computational fluid dynamics has potential to become a useful to validate the performance of the HRSG. In this study a solver has been implemented in the open source code, OpenFOAM, for combustion simulation in the heat recovery steam generator. The solver is based on the steady laminar flamelet model to simulate detailed chemical reaction mechanism. Thereafter, the solver is used for simulation of HRSG system. Three cases with varying fuel injections and gas turbine exhaust gas flow rates were simulated and the results were compared with measurements at the system outlet. Predicted temperature and emissions and those from measurements showed the same trend and in quantitative agreement.

A Basic Analysis of Performance of Turbo CI Engine based on Stirling Cycle (스털링 사이클을 기본으로 하는 과급 CI 엔진의 기초 성능 분석)

  • 배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.76-85
    • /
    • 2000
  • Stirling cycle was actualized as so called ‘hot air engine’. It has been focused again lately as one of measures for exhaust gas emission problem, but as small power engine because of its method of heat addition. Recently marine power plants commenced to meet a stringent environmental restrictions by international convention, Marpol so that diesel engines as main and auxiliarly power plants are urged to be reformed to reduce NOx emission. Author devised a compression ignition engine as a large marine power plants combined with turbo charger based on stirling cycle, and analyzed the performance by means of basic thermodynamic calculation. Analyzed in this paper, were theoretical efficiency, mean effective pressure, required equivalence ratio, gas turbine power ratio, maximum pressure, states of turbo-charger inlet gas and exhaust gas, manifesting that the engine could be proposed as one of the future power plants of marine use.

  • PDF

Service Life Analysis of Control Valve for Automatic Turbine Startup of Thermal Power Plant (화력 발전소 증기 터빈의 자동기동을 위한 주증기 제어 밸브 수명해석)

  • Kim, Hyo-Jin;Kang, Yong-Ho;Shin, Cheul-Gyu;Park, Hee-Sung;Yu, Bong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.7-12
    • /
    • 2000
  • The automatic turbine startup system provides turbine control based on thermal stress. During the startup, control system monitors and evaluates main components of turbine using damage mechanism and life assessment. In case of valve chest, the temperature of inner/outer wall is measured by thermo-couples and the safety of these values are evaluated by using allowable ${\Delta}T$ limit curve during the startup. Because allowable ${\Delta}T$ limit curve includes life assessment, it is possible to apply this curve to turbine control system. In this paper, low cycle fatigue damage and combined rupture and low cycle fatigue damage criterion proposed for yielding the allowable ${\Delta}T$ limit curve of CV(control valve) chest. To calculate low cycle fatigue damage, the stress analysis of valve chest has peformed using FEM. Automatic turbine startup to assure service life of CV was achieved using allowable ${\Delta}T$ limit curve.

  • PDF

Service Life Analysis of Control Valve far Automatic Turbine Startup of Thermal Power Plant (화력 발전소 증기 터빈의 자동기동을 위한 주증기 제어 밸브 수명해석)

  • Kim, Hyo-Jin;Gang, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The automatic turbine startup system provides turbine control based on thermal stress. During the startup, control system monitors and evaluates main components of turbine using damage mechanism and life assessment. In case of valve chest, the temperature of inner/outer wall is measured by thermo-couples and the safety of these values are evaluated by using allowable △T limit currie during the startup. Because allowable ΔT limit curve includes life assessment, it is possible to apply this curve to turbine control system. In this paper, low cycle fatigue damage, combined rupture and low cycle fatigue damage criterion were proposed for yielding the allowable ΔTf limit curve of CV(control valve) chest. To calculate low cycle fatigue damage, the stress analysis of valve chest has been performed using FEM. Automatic turbine startup to assure service life of CV was achieved using allowable ΔT limit curve.

Gas Turbine Data Acquisition and Monitoring System for Combined Cycle Power Plant

  • Kang, Feel-Soon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.405-410
    • /
    • 2008
  • This paper presents a data acquisition and monitoring system for a gas turbine. The proposed system entitled C-Tune DAS plays an important role to make an analysis of the real-time operation of the gas turbine under maintenance. The designed LabVIEW based software is divided into three parts according to their original functions, i.e., data acquisition, data analysis with display, and data storage. The data acquisition part receives data from a PMS (Plant Management System) server and two cFPs (Compact-Field Point). To verify the validity of the developed system, it is applied to gas turbines in the combined cycle power plant in Korea.

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.

A Study on the Cost Function Based on Operating Modes for Combined Cycle Power Plant (복합화력발전기의 운전조합별 비용함수에 관한 연구)

  • Lee, Jaehee;Yoon, Hyeok-Jun;Oh, Chang-Jin;Noh, Yu-Rim;Joo, Sung-Kwan;Ryu, Sangmin;Wi, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.358-364
    • /
    • 2018
  • In this study, the theoretical methodology is presented for estimating cost function based on operating modes for Combined Cycle Power Plant. The proposed method has estimated cost functions using the relationship between the gas turbine heat input and the output ratio of the steam turbine. In order to verify the proposed method, a regression analysis was performed using the single cost function estimated by the existing performance test method and the cost function for each operating mode estimated by the proposed method. The results of case studies using the 2016 generator input and output data are presented to show the effectiveness of the proposed method.

Thermal Design Analysis of Triple-Pressure Heat Recovery Steam Generator and Steam Turbine Systems (삼중압 열회수 증기발생기와 중기터빈 시스템의 열설계 해석)

  • Kim, Dong-Seop;Lee, Bong-Ryeol;No, Seung-Tak;Sin, Heung-Tae;Jeon, Yong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.507-514
    • /
    • 2002
  • A computation routine, capable of performing thermal design analysis of the triple-pressure bottoming system (heat recovery steam generator and steam turbine) of combined cycle power plants, is developed. It is based on thermal analysis of the heat recovery steam generator and estimation of its size and steam turbine power. It can be applied to various parametric analyses including optimized design calculation. This paper presents analysis results for the effects on the design performance of heat exchanger arrangements at intermediate and high temperature parts as well as steam pressures. Also examined is the effect of steam sources for deaeration on design performance.