• 제목/요약/키워드: Turbine casing

검색결과 85건 처리시간 0.036초

Performance characteristic investigation and stay vane effect on Ns100 inline francis turbine

  • Singh, Patrick Mark;Chen, Zhenmu;Hwang, Yeong-Cheol;Kang, Min-Gu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.397-402
    • /
    • 2016
  • This study presents the performance characteristics of a small Francis turbine with an inline casing and is a continuation of a previous study. A new runner design has been implemented using the previous facility. The specific speed of the new runner has been modified from $N_s$ 80 to $N_s$ $100m-kW-min^{-1}$. This turbine can be installed in a city water supply system. To dissipate excess pressures in the water line system an inline-turbine can be used instead of an inline-pressure reducing valve. Thus, some of the energy can be recovered by utilizing the pressure difference. For best applicability and minimal space consumption, the turbine is designed with an inline casing instead of a common spiral casing. As a characteristic of inline casing, the flow accesses to the runner are in the radial direction, showing low efficiency. The installation of vanes improves the internal flow and positively affects the output power. In contrast to the previous study, the new runner reduces the effect of the stay vanes by maintaining a higher efficiency.

500MW 화력발전소 저압터빈 Hood 공진 특성에 관한 연구 (Study on vibration characteristics of low pressure turbine hood resonance in a 500MW thermal power plant)

  • 조철환;조성태;구재량;김형석
    • 동력기계공학회지
    • /
    • 제17권3호
    • /
    • pp.23-27
    • /
    • 2013
  • In this research paper, we study on how to decrease the high vibration of turbine hood casings which are main facilities of power generation industry. Cause of Standard coal-fired power 500MW facilities turbine hoods' high vibration is that Natural frequency of hood casing designed in near domain frequency, when they are making hoods. We investigate to reduce high vibration at hood casing. We use FEM method to found how to avoid resonance, and test to confirm that our FEM result. We Finally attach minium mass plate at hood casing to avoid resonance and high vibration reduce lower $100{\mu}m$.

가스 터빈 Hot gas casing에 대한 유동 및 열응력 해석 (A study on the flow and thermal analysis of the hot gas casing of gas turbine)

  • 최영진;이영신;김재훈;박원식;김현수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.557-561
    • /
    • 2004
  • The hot gas casing of gas turbine has operated high temperature and thermal gradient. The structure safety of hot gas casing will be highly depend on the thermal stress. In this paper, flow and thermal stress analysis of hot gas casing is carried out using ANSYS program. The obtained temperature data by flow analysis of hot gas casing apply the load condition of the thermal analysis. The thermal stress analysis is carry out the elastic-plasticity analysis. The pressure, temperature and velocity of the flow and thermal stress of the hot gas casing are presented.

  • PDF

대형 증기터빈 물유입에 의한 손상메커니즘 분석과 원상복구특성 연구 (Study on Damage Mechanism Analysis and Recovery Characteristic of the Large Scale Steam Turbine Cased by Water Induction)

  • 김두영;박광하;이봉희
    • 동력기계공학회지
    • /
    • 제15권5호
    • /
    • pp.22-29
    • /
    • 2011
  • In this study, the damage mechanism of large scale steam turbine due to water induction was analyzed and recovery characteristics were reviewed. A turbine consists of the rotating rotor and the stationary casing, and the clearance between them is very small for the efficiency enhancement. If water induction, while relatively cold steam or water is introduced into turbine, occurs, the considerable humping is caused at the casing near the initial water induction point and that induces the rubbing between rotor and casing. Finally, it leads to the catastrophic failure. Bowed rotor has the different characteristics in the recovery depending on damage degree. The elastic deformation due to light rubbing is recovered by turning the rotor with 3 rpm under normal operation condition, but most plastic deformation due to rubbing deforms the local microstructure and that results in permanent deformation which could not be recovered under normal operation condition. Bowed rotor has diverse characteristics depending on the recovery method, and the method is empirical and needs the cutting edge technology. Careful recovery treatment of the rotor will eliminate the risks and secure the high quality rotor similar to new rotor. If any critical error is made during the recovery, the rotor would not be recovered permanently and it should be scrapped.

등온열처리법에 의해 모의 열화된 1Cr-1Mo-0.25V 터빈케이싱 강의 재질열화 평가 (Evaluation of Material Degradation of 1Cr-1Mo-0.25V Turbine Casing Steel Aged Artificially by Isothermal Heat Treatment)

  • 마영화;김도형;윤기봉
    • 한국안전학회지
    • /
    • 제25권1호
    • /
    • pp.22-26
    • /
    • 2010
  • Material degradation should be considered to assess integrity and residual life of high temperature equipments. However, the property data reflecting degradation are not sufficient for practical use. In this study, mechanical properties of 1Cr-1Mo-0.25V casting steel generally used for turbine casing were measured and variation of microstructure was observed. Degradation was simulated by isothermal heat treatment.

횡류형 파워터빈의 최적화 설계에 관한 수치해석 연구 (A Numerical Study on an Optimum Design of a Cross-flow Type Power Turbine (CPT))

  • 하진호;김현철;김철호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3050-3055
    • /
    • 2007
  • A wind turbine is one of the most popular energy conversion systems to generate electricity from the natural renewable energy source and an axial-flow type wind turbine is the most popular system for the electricity generation in the wind farm nowadays. In this study, a cross-flow type turbine has been studied for the application of wind turbine for electricity generation. The target capacity of electric power generation of the model wind turbine developing on the project is 12 volts, 130A/H (about 1.56kW). The important design parameters of the model turbine impeller are the inlet and exit angle of the turbine blade, number of blade, hub/tip ratio and the exit flow angle of the casing. In this study, the radial equilibrium theorem was used to decide the inlet and exit angle of the impller blade and CFD technique was used to have the performance analysis of the designed model power turbine to find out the optimum geometry of the CPT impeller and casing. The designed CPT with 24 impeller blades at ${\alpha}=82^{\circ}$, ${\beta}=40^{\circ}$ of turbine blade angle was estimated to generate 284.6 N.m of indicated torque and 2.14kW of indicated power.

  • PDF

용적형수차의 압력맥동 발생기구 및 특성에 관한 연구 (Occurrence Mechanism and Characteristics of Pressure Pulsation in a Positive Displacement Hydraulic Turbine)

  • 최영도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.947-953
    • /
    • 2007
  • Occurrence of pressure pulsation in positive displacement hydraulic turbine is one of the principal problems which should be cleared to improve the turbine performance and to put the turbine to practical use. Therefore, present study is tried to examine the occurrence mechanism and characteristics of the pressure pulsation CFD analysis and experimental measurement are implemented in this study to clarify the phenomena of unsteady pressure pulsation. The results show that occurrence reason of the pressure pulsation is not only due to a series of opening and closing of the chamber formed between rotor and casing wall but also due to the variation of rotational speed of following rotor. The pressure pulsation causes torque variation and the curve patterns of the torque variation conforms to that of the pressure pulsation. Pressure in the chamber is equal to the averaged value of inlet and outlet pressures. Sudden pressure decrease by accelerated through-flow between lobe and casing wall results in torque loss.

속도계가 부착된 구조물에서 조화성분의 공진이 미치는 영향 고찰 (Effect Investigation of Resonance by Harmonic Components on Structures with Velocity Seismoprobes in a Turbine Rotor System)

  • 양경현;조철환;배춘희;송오섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.98-102
    • /
    • 2005
  • Most bearing casings are designed to focus on strength and weight of themselves because rotor speed passes through the critical speed when operation begins in large plants such as power plants. And It is treated importantly the relation between rotating frequency of the rotor and the natural frequency of casings to prevent resonance. But there is some cases that it is overlooked for harmonic components above rotating frequency. So we present experimentally a case that harmonic forces may make a resonance on casing fixing probes to measure vibration in a turbine-generator system and the vibration is generated when one component of harmonic forces excites the mode that the natural frequency of a certain bearing casing is close to one of harmonics of basic rotating frequency (1x).

  • PDF