• 제목/요약/키워드: Turbine Rotational Power

검색결과 104건 처리시간 0.025초

원심압축기의 디퓨져 각도조절과 회전수변경에 따른 성능예측에 관한 연구 (Study on performance prediction of centrifugal compressor with diffuser angle and rotational speed change)

  • 박영하;심영호;김재실;조수용
    • 동력기계공학회지
    • /
    • 제16권5호
    • /
    • pp.55-62
    • /
    • 2012
  • Centrifugal compressors are widely used and each operating condition is different. However, it cannot be manufactured according to the every operating condition. In the this study, performance of compressor was evaluated with various rotational speeds of impeller and various stagger angles of diffuser in order to apply a typical model widely. A centrifugal compressor was designed and manufactured based on the design point. On this machines, an experiment was conducted and the performance was predicted at off-design point. The performance prediction was validated with the experimental result and the numerical result. Although the isentropic efficiency on the prediction was slightly lower than that on the experimental result due to the heat loss in the experiment, the pressure ratio was predicted well and also the predicted results were matched well with the numerical results. When the rotational speed of the impeller and the stagger angle of the diffuser were changed together, the compressor can be worked in the high efficiency region and avoided operating in the stall region.

3차원 축류형 터빈에서 입사각의 영향에 관한 실험적 연구 (An Experimental Study of Incidence Angel Effect on 3-D Axial Type Turbine)

  • 김동식;조수용
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1292-1301
    • /
    • 2002
  • An experimental study of turbine performance is conducted with various incidence angles on a rotating turbine rotor. 5 different incidence angles are applied from -17$^{\circ}$to 13$^{\circ}$with 7.5$^{\circ}$gaps. In order to precisely set up the incidence angles at the rotor inlet, 5 turbine discs are manufactured with the different fir tree section. Total-to-total efficiencies are obtained on the several off-design points with considering the exit total pressure, which is meas fred at 12 locations between the hub and casing using a pressure rake. The degree of reaction is 0.373 at the mean radius, and Reynolds number based on the rotor chord is 0.86$\times$10$^{5}$ at the turbine inlet on the design point experiment. The experiment on a single-stage turbine is conducted at the low-pressure and low-speed state, but it is sufficient to consider the blade loading effect due to the rotating apparatus even though the total pressure loss at the exit is increased proportionally to the turbine output power. The experimental results recommend 6$^{\circ}$as an optimum incidence angle on the turbine blade design. The total-to-total efficiency is steeply decreased when the incidence angle is over $\pm$9$^{\circ}$ from the optimum incidence angle. In the range of less than -10$^{\circ}$incidence angle, 7.5$^{\circ}$ reduction of incidence angle generates 15% decrease of total-to-total efficiency. This result is obtained on the same rotor blade by changing only the rotational speed to minimize the effect of profile and secondary flow loss in the passage. Experimental results show that the change rate of total-to-total efficiency according to the incidence angle change is unchanged although the turbine operates at the off-design condition.

다단 소형 터빈에서의 부분분사 특성에 관한 연구 (A Study on Partial Admission Characteristics of a Multi-Stage Small-Scaled Turbine)

  • 조종현;정우천;김재실;조수용
    • 한국항공우주학회지
    • /
    • 제38권9호
    • /
    • pp.943-954
    • /
    • 2010
  • 본 연구에 적용된 터빈은 반경류형이며, 동익의 외경은 108 mm이다. 터빈은 1.4-4.1%의 낮은 부분분사율에서 작동하므로 익형은 축류형으로 설계되었으며 3단으로 구성되었다. 터빈에서 부분분사율과 팁간극 및 노즐유동각의 변화에 따른 성능의 변화를 측정하였다. 또한 터빈의 단수를 변경하면서 각 단수에서 발생되는 출력의 차이에 대한 측정이 이루어졌다. 본 연구의 터빈은 다양한 작동조건에서 운전되므로 넓은 작동범위에 따른 비교를 위하여 회전수를 변경하면서 탈설계 영역에서의 성능 평가가 이루어졌다. 뿐만 아니라 다양한 작동조건에 합당한 시스템의 평가를 위하여 총비오크가 얻어졌다. 아울러 소형터빈의 설계 및 성능예측을 위하여 유동해석을 수행하였으며 얻어진 예측의 결과는 실험으로 얻어진 결과와 잘 일치하였다.

마이크로 수력 발전을 위한 프로펠러형 림구동 축류 터빈 설계 (Design of a Propeller Type Rim-Driven Axial-Flow Turbine for a Micro-Hydropower System)

  • 오진안;방덕제;정노택;이수민;이진태
    • 대한조선학회논문집
    • /
    • 제59권3호
    • /
    • pp.183-191
    • /
    • 2022
  • A design method for a propeller type rim-driven axial-flow turbine for a micro-hydropower system is presented. The turbine consists of pre-stator, impeller and post-stator, where the pre-stator plays a role as a guide vane to provide circumferential velocity to the on-coming flow, and the impeller as a rotational power generator by absorbing angular momentum of the flow. BEM(Blade Element Method), which is based on the turbine Euler equation, is employed to design the pre-stator and impeller blades. NACA 66 thickness form and a=0.8 mean camber line, which is widely accepted as a marine propeller blade section, is used for the pre-stator and turbine blade section. A CFD method, derived from the discretization of the RANS equations, is applied for the analysis of the designed turbine system. The design conditions of the turbine is confirmed by the CFD calculation. Turbine characteristic curve is calculated by the CFD method, in order to provide the performance characteristics at off-design operation conditions. The proposed procedures for the design of a propeller type rim-driven axial-flow turbine are established and confirmed by the CFD analysis.

Dynamic analysis of offshore wind turbines

  • Zhang, Jian-Ping;Wang, Ming-Qiang;Gong, Zhen;Shi, Feng-Feng
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.373-380
    • /
    • 2020
  • For large-scale 5MW offshore wind turbines, the discrete equation of fluid domain and the motion equation of structural domain with geometric nonlinearity were built, the three-dimensional modeling of the blade considering fluid-structure interaction (FSI) was achieved by using Unigraphics (UG) and Geometry modules, and the numerical simulation and the analysis of the vibration characteristics for wind turbine structure under rotating effect were carried out based on ANSYS software. The results indicate that the rotating effect has an apparent effect on displacement and Von Mises stress, and the response and the distribution of displacement and Von Mises stress for the blade in direction of wingspan increase nonlinearly with the equal increase of rotational speeds. Compared with the single blade model, the blade vibration period of the whole machine model is much longer. The structural coupling effect reduces the response peak value of the blade displacement and Von Mises stress, and the increase of rotational speed enhances this coupling effect. The maximum displacement difference between two models decreases first and then increases along wingspan direction, the trend is more visible with the equal increase of rotational speed, and the boundary point with zero displacement difference moves towards the blade root. Furthermore, the Von Mises stress difference increases gradually with the increase of rotational speed and decreases nonlinearly from the blade middle to both sides. The results can provide technical reference for the safe operation and optimal design of offshore wind turbines.

CFD를 이용한 수평축 조류발전 로터 성능의 기초연구 (Fundamental Study on the HAT Tidal Current Power Rotor Performance by CFD)

  • 조철희;임진영;이강희;채광수;노유호;송승호
    • 신재생에너지
    • /
    • 제5권2호
    • /
    • pp.3-8
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. The paper introduces the experiment of rotor performance and also the fundamental study on the characteristics of three different rotors and flow near the rotor by CFD.

  • PDF

인접한 조류발전용 수직축 터빈의 배치방식에 따른 성능 변화 (Study on Performance Variation According to the Arrangements of Adjacent Vertical-Axis Turbines for Tidal Current Energy Conversion)

  • 이정기;현범수
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제19권2호
    • /
    • pp.151-158
    • /
    • 2016
  • 조류발전단지는 유망한 해역에 터빈을 복수로 다배열하여 발전하는 시스템을 말한다. 이러한 단지는 각 터빈이 최대 효율로 작동하고, 최대 발전량을 얻을 수 있도록 설계되어야 하는데, 이를 위해서는 터빈 사이의 간섭으로 인한 성능 저하가 발생하지 않도록 터빈은 일정 거리를 두고 배치되어야 한다. 수평축 터빈의 경우 EMEC(European Marine Energy Centre)에서 배치거리를 제안하고 있으나, 수직축 터빈은 그러한 규정이 제안된 바 없다. 여러 연구 결과들에 따르면 수직축 터빈이 인접할 경우 성능의 향상까지 도모될 수 있으므로, 그 배치는 수평축 터빈보다 더욱 중요하게 검토될 필요가 있다. 본 논문에서는 수직축 터빈에 대하여 수평축 터빈과 같이 일정 거리를 두고 배치하는 것과 터빈을 인접하도록 배치하는 것과의 차이를 조사하였다. 이를 위해 두 터빈간의 거리와 회전방향을 파라메터로 하여 그에 따른 성능 차이를 수치해석적으로 연구하였고, 그 이유를 파악하고자 하였다. 본 연구를 통하여 가장 적절한 수치해석 영역과 조건을 설정할 수 있었으며, 인접한 두 터빈이 각각 반시계-시계방향으로 회전하는 것이 단독 터빈 2기 대비 약 9.2%의 성능향상이 예측되었다. 터빈이 대각으로 배치된 경우는 최대 약 5.6%정도 성능이 향상됨을 확인하였다. 본 연구는 수직축 터빈을 이용한 조류발전단지를 설계시 유용한 정보가 될 것으로 기대된다.

Performance and heat transfer analysis of turbochargers using numerical and experimental methods

  • Pakbin, Ali;Tabatabaei, Hamidreza;Nouri-Bidgoli, Hossein
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.523-532
    • /
    • 2022
  • Turbocharger technology is one of the ways to survive in a competitive market that is facing increasing demand for fuel and improving the efficiency of vehicle engines. Turbocharging allows the engine to operate at close to its maximum power, thereby reducing the relative friction losses. One way to optimally understand the behavior of a turbocharger is to better understand the heat flow. In this paper, a 1.7 liter, 4 cylinder and 16 air valve gasoline engine turbocharger with compressible, viscous and 3D flow was investigated. The purpose of this paper is numerical investigation of the number of heat transfer in gasoline engines turbochargers under 3D flow and to examine the effect of different types of coatings on its performance; To do this, modeling of snail chamber and turbine blades in CATIA and simulation in ANSYS-FLUENT software have been used to compare the results of turbine with experimental results in both adiabatic and non-adiabatic (heat transfer) conditions. It should be noted that the turbine blades are modeled using multiple rotational coordinate methods. In the experimental section, we simulated our model without coating in two states of adiabatic and non-adiabatic. Then we matched our results with the experimental results to prove the validation of the model. Comparison of numerical and experimental results showed a difference of 8-10%, which indicates the accuracy and precision of numerical results. Also, in our studies, we concluded that the highest effective power of the turbocharged engine is achieved in the adiabatic state. We also used three types of SiO2, Sic and Si3N4 ceramic coatings to investigate the effect of insulating coatings on turbine shells to prevent heat transfer. The results showed that SiO2 has better results than the other two coatings due to its lower heat transfer coefficient.

Maximum Power Point Tracking in PMSG Using Fuzzy Logic Algorithm

  • ;이홍희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2009년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.135-138
    • /
    • 2009
  • In this paper, a novel maximum power point tracking (MPPT) for a PMSG-based variable speed wind power system is proposed using the fuzzy logic algorithm. The control algorithm is developed based on the normal hill climb searching (HCS) method, commonly used in wind energy conversion systems (WECS). The inputs of fuzzy-based controller are the derivations of DC output power and the step size of DC/DC converter duty cycles. The main advantages of the proposed MPPT method are no need to measure the wind velocity and the generator rotational speed. As such, the control algorithm is independent of turbine characteristics, achieving the fast dynamic responses with non-linear fuzzy systems. The effectiveness of the proposed MPPT strategy has been verified through the simulated results.

  • PDF

스마트무인기 추진장치 지상시험 (Ground Test of Smart UAV Propulsion System)

  • 이창호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.533-536
    • /
    • 2009
  • 스마트무인기의 추진동력계통은 터보프롭 항공기와 유사한 피치 가버닝 개념으로 조종사가 엔진동력을 직접 입력하고 제어기는 프롭로터의 회전속도를 일정하게 유지하는 방식을 사용한다. 본 논문에서는 스마트무인기의 지상시험 결과 중 엔진관련 데이터를 추출하여 전기 작동기로 구동되는 엔진 Power Lever 각도의 변위값과 가스발생기 회전속도의 상관관계 및 동력 변화를 엔진성능계산프로그램으로 예측한 결과과 비교한다.

  • PDF