• Title/Summary/Keyword: Turbine Nozzle

Search Result 302, Processing Time 0.026 seconds

A Study of Supersonic Nozzle Design for Partial Admitted Turbine Used on Organic Rankine Cycle (유기랭킨사이클용 부분분사터빈의 초음속노즐 설계에 대한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.5-12
    • /
    • 2014
  • Organic Rankine Cycle is widely used to convert the low-grade thermal energy to the electrical energy. However, usually available thermal energy is not supplied constantly. This makes hard to use positive displacement expanders. Hence, turbo-expander has merits to apply as an expander in ORC because it can operate well off-design points even though the mass flowrate is fluctuated. The thermal energy fluctuation causes the turbo-expander to operate in partial admission. In addition, supersonic nozzles are required so that the partially admitted turbine operates efficiently. In this study, R245fa was chosen as a working fluid of ORC. A design method and an analysis technique of supersonic nozzle based on R245fa were developed. The shape of the nozzle was designed by the characteristic method. The thermal properties within the nozzle were estimated and the predicted results were agreed well with the computed results.

Design Optimization of Fan-shaped Film Cooling Hole Array on Pressure Side Surface of High Pressure Turbine Nozzle (고압터빈 노즐 압력면에서의 확장 형상 막냉각 홀 배열 최적설계)

  • Lee, Sanga;Rhee, Dong-Ho;Kang, Young-Seok;Kim, Jinuk;Seo, Do-Young;Yee, Kwanjung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.52-58
    • /
    • 2014
  • In the present work, design optimization of film-cooling hole array on the pressure side of high pressure turbine nozzle was conducted. There are four rows of fan-shaped film cooling holes on the nozzle pressure side surface and each row has a straight array of holes in the spanwise direction for baseline model. For design optimization, hole distributions in streamwise and spanwise directions for three rows of holes except first row are parameterized as a 2nd-order shape function. Three-dimensional compressible RANS equations are used for flow and thermal analysis around the nozzle surface and optimization technique using Design of Experiment, Kriging surrogate model and Genetic Algorithm is used. The results shows that averaged adiabatic wall temperature at the whole nozzle surface decreases about 2.7% and averaged film cooling effectiveness at the pressure side of nozzle increased about 8.2%.

Study on the RPM Characteristics of Rotary Atomizer for Various Air Turbine and Nozzle Types (공기 터빈 및 노즐 설계에 따른 도장기기의 회전수 특성에 관한 연구)

  • Lee, Chan;Cha, SangWon
    • Clean Technology
    • /
    • v.9 no.4
    • /
    • pp.163-168
    • /
    • 2003
  • Basic concepts and procedures for designing air turbine and atomizing disk, which require core technologies, of rotary atomizer were established. Experimental data agreed well with the computational fluid dynamics analysis results. The rotary atomizer RPM was varied remarkably for various air turbine and atomizing disk types. Experimentally, the atomizer with $20^{\circ}$, slope-contraction and 2 nozzle air turbine has shown the most desirable performance.

  • PDF

Aerodynamic Shape Design of a Partial Admission Turbine Using CFD (CFD를 이용한 부분흡입형 터빈 공력형상 설계)

  • Lee, Eun-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1131-1138
    • /
    • 2006
  • Aerodynamic shape design of a partial admission turbine using CFD has been performed. Two step approaches are adopted in this study. Firstly, two-dimensional blade shape is optimized using CFD and genetic algorithm. Initially, the turbine cascade shape is represented by four design parameters. By controlling the design parameters as variables, the non-gradient search is analyzed for obtaining the maximum efficiency. The final two-dimensional blade proved to have a more blade power than the initial blade. Secondly, the three-dimensional CFD analysis including the nozzle, rotor and stator has been conducted. To avoid a heavy computational load due to an unsteady calculation, the frozen rotor method is implemented in steady calculation. The frozen rotor method can detect a variation of the flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a better idea of wake loss mechanism starting from the lip of the nozzle than the mixing plane concept. Finally, the combination of two and three dimensional design method of the partial admission turbine in this study has proven to be a robust tool in development phase.

Experimental Study to Investigate the Flow Characteristics of a Supersonic Turbine Depending on the Relative Positions of Nozzle and Cascade (노즐과 익렬의 상대 위치에 따른 초음속 터빈의 유동특성에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.30-38
    • /
    • 2010
  • Experiments were performed to investigate the flow characteristics of a partial admission supersonic turbine depending on the relative positions of nozzle and cascade. The flow was visualized by a Schlieren system. The static pressures at the turbine cascade inlet, passage and outlet were measured by pressure transducers. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions of the supersonic turbine were observed by the experiments. And the flow characteristics in the supersonic turbine as the relative positions were observed.

Experimental Study on Effects of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade (곡면 끝벽을 갖는 터빈 노즐 안내깃 캐스케이드내 3차원 유동장에 관한 실험적 연구)

  • Yun, Won-Nam;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1975-1980
    • /
    • 2004
  • The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear cascade with a contoured endwall configuration was used and changes in the three-dimensional flow field were analyzed and discussed. Measurements of secondary flow velocity and total pressure loss within the passage have been performed by means of five-hole probes. The investigation was carried out at fixed exit Reynolds number of $4.0{\times}10^5$. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. The results show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the flow acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall.

  • PDF

Numerical Prediction of Unsteady Flows through Whole Nozzle-Rotor Cascade Channels with Partial Admission

  • Sasao, Yasuhiro;Monma, Kazuhiro;Tanuma, Tadashi;Yamamoto, Satoru
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.248-253
    • /
    • 2009
  • This paper presents a numerical study for unsteady flows in a high-pressure steam turbine with a partial admission stage. Compressible Navier-Stokes equations are solved by the high-order high-resolution finite-difference method based on the fourth-order compact MUSCL TVD scheme, Roe's approximate Riemann solver, and the LU-SGS scheme. The SST-model is also solved for evaluating the eddy-viscosity. The unsteady two-dimensional flows through whole nozzle-rotor cascade channels considering a partial admission are numerically investigated. 108 nozzle passages with two blockages and 60 rotor passages are simultaneously calculated. The influence of the flange in the nozzle box to the lift of rotors is predicted. Also the efficiency of the partial admission stage changing the number of blockages and the number of nozzles is parametrically predicted.

Investigation on the Performance Characteristics of the 75ton Class Turbopump Turbine (75톤급 액체로켓 엔진 터보펌프 터빈의 성능특성연구)

  • Jeong, Eun-Hwan;Lee, Hang-Gee;Park, Pyun-Goo;Kwak, Hyun-D.;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.65-71
    • /
    • 2010
  • Performance test of the 75ton class turbopump turbine was performed. Using the measured turbine power characteristics in the wide-range operational conditions, variations of nozzle velocity ratio, total pressure loss, and relative flow angle to the pressure ratios and rotational speeds are quantified. Efficiency and nozzle exit pressure behavior was also investigated and compared with 30ton turbopump turbine data. A rotor blade was redesigned based on the test results and CFD analysis.

Numerical Flow Analysis of a Partial Admission Turbine Using a Frozen Rotor Method (프로즌 로터 기법을 이용한 부분흡입형 터빈 수치해석)

  • Noh, Jun-Gu;Jeong, Eun-Hwan;Lee, Eui-Seok;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.15-20
    • /
    • 2004
  • Numerical analysis of the partial admission turbine in the KARI turbopump has been performed. Flow field of the partial admission turbine is intrinsically unsteady and three dimensional. To avoid heavy computational efforts, the frozen rotor method is adopted in computation and compared with the mixing plane approach. The frozen rotor method can represent the variation of a flow field along the circumferential direction of rotor blades, which have the different relative positions to the nozzle with one another. It also illustrates the wake loss mechanism starting from the lip of a nozzle, which is not captured in the mixing plane method. The frozen rotor method has proven to be an efficient tool for the design of a partial admission turbine.

Status of Combustor Development for Industrial Gas Turbine (산업용 가스터빈 연소기 개발 현황)

  • Ahn, Chulju;Park, Heeho;Kim, Min-Ki;Kim, Myeonghyo;Jung, Seungchai;Kim, Kitae;Shon, Youngchang
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.113-116
    • /
    • 2013
  • The Samsung Techwin has been developed the various types of combustor and fuel nozzle frontal devices for the aero engine and small scale industrial gas turbines. Currently, we have been developed the highly heat capacity and long-lived gas turbine combustor based on the short-lived combustor and fuel injector technologies. In this paper, the market trends and the information on the survey of an advanced gas turbine combustor were introduced for the development of large scale gas turbine combustor and fuel nozzle assembly.

  • PDF