• 제목/요약/키워드: Turbine Nozzle

검색결과 302건 처리시간 0.024초

적외선 카메라를 이용한 초음속 충돌 동축제트의 벽면 온도 측정 (An Experimental Study of the Wall Temperature of the Supersonic Impinging Coaxial Jet Using an FLIR)

  • 곽종호;;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1631-1636
    • /
    • 2004
  • The supersonic impinging jet has been extensively applied to rocket launching system, gas jet cutting control, gas turbine blade cooling, etc. In such applications, wall temperature of an object on which supersonic jet impinges is a very important factor to determine the performance and life of the device. However, wall temperature data of supersonic impinging jets are not enough to data. The present study describes an experimental work to measure the wall temperatures of a vertical flat plate on which supersonic, dual, coaxial jet impinges. An Infrared camera is employed to measure the wall temperature distribution on the impinging plate. The pressure ratio of the jet is varied to obtain the supersonic jets in the range of over-expanded to moderately under-expanded conditions at the exit of coaxial nozzle. The distance between the coaxial nozzle and the flat plate was also varied. The coaxial jet flows are visualized using a Shadow optical method. The results show that the wall temperature distribution of the impinging plate is strongly dependent on the jet pressure ratio and the distance between the nozzle and plate.

  • PDF

Prefilming air blast 연료 노즐의 다상유동 및 반응 유동장 수치해석 (CFD simulation of a prefilming air blast fuel nozzle)

  • 정승채;김신현;박희호;류시양
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.251-253
    • /
    • 2017
  • Prefilming air blast 연료노즐의 다상유동 해석을 수행하였다. 연료가 미립화되는 과정을 관찰하였으며 liquid film의 두께와 속도를 계산하였다. Slot에서 분사된 연료는 prefilmer surface에서 얇은 액막을 형성한 후 연료노즐 lip에서 액적으로 분열되었다. 또한 계산된 liquid film의 두께와 속도를 경계조건으로 하여 반응유동장 해석을 수행하였다. 분사된 액적은 venturi throat를 지나면서 기화되었고 연료노즐 하류에 반응영역이 형성되어 안정적으로 보염이 이루어졌다.

  • PDF

V8형 TCI 디젤기관의 배출가스저감 및 성능개선에 관한 연구 (A Study on the Emission Reduction and Performance Improvement in a V8 Type TCI D.I. Diesel Engine)

  • 윤준규;임종한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.443-452
    • /
    • 2005
  • The purpose of this study is experimentally to analyze the effects of intake port swirl, injection system and turbocharger on the engine performance and the emission characteristics in a V8 type turbocharger intercooler D.I. diesel engine of the displacement 16.7L, and to suggest the improvement of engine performance. Generally to enhance engine power, TCI diesel engine is put to practically use turbocharged intercooler in order to increase volume efficiency which is cooled boost air. As results of considering the factors of the intake port of swirl ratio 2.25, compression ratio 17.5. re-entrant $8.5^{\circ}$ combustion bowl, nozzle hole diameter ${\phi}0.33{\ast}3+{\phi}0.35{\ast}2$. nozzle protrusion 3.18mm, injection timing BTDC $12^{\circ}CA$ and turbocharger(compressor 0.6A/R+46Trim. turbine 1.0 A/R+57Trim) is the best in the full load in the engine performance and the exhaust characteristics of NOx concentration. Therefore. their factors are appropriated as intake system, injection and turbocharger system.

수소 전소용 연소 노즐 형상과 연소실 압력이 경계층 역화에 미치는 영향 (The Effects of Nozzle Shapes and Pressures on Boundary Layer Flashback of Hydrogen-Air Combustor)

  • 이원준;황정재;김한석;민경욱;김민국
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.776-785
    • /
    • 2022
  • Hydrogen combustion in modern gas-turbine engine is the cutting edge technology as carbon-free energy conversion system. Flashback of hydrogen flame, however, is inevitable and critical specially for premixed hydrogen combustion. Therefore, this experimental investigation is conducted to understand flashback phenomenon in premixed hydrogen combustion. In order to investigate flashback characteristics in premixed hydrogen (H2)/air flame, we focus on pressure conditions and nozzle shapes. In general, quenching distance reduces as pressure of combustion chamber increases, causing flashback from boundary layer near wall. The flashback regime for reference and modified candidate configurations can broadly appear with increasing combustion chamber pressure. The later one can improve flashback-resist by compensating flow velocity at wall. Also, improved wall flow velocity profile of suggested contraction nozzle prevents entire flashback but causes local flashback at nozzle exit.

추기노즐 충격판 주변의 급수가열기 동체 감육에 대한 유동해석 (A Flow Analysis in the surroundings of the Impingement Baffle of the Extracting Nozzle for Shell Wall Thinning of a Feedwater Heater)

  • 정선희;김경훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2977-2982
    • /
    • 2007
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle - installed downstream of the high pressure turbine extraction steam line - inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the down scale experimental data which effect on disclosing of the shell wall thinning of the high pressure feedwater heaters by porous plate.

  • PDF

열음향 해석 모델을 통한 가스터빈 연소기에서의 선형 안정성 분석 (Linear Stability Analysis in a Gas Turbine Combustor Using Thermoacoustic Models)

  • 김대식
    • 한국연소학회지
    • /
    • 제17권2호
    • /
    • pp.17-23
    • /
    • 2012
  • In this study, thermoacoustic analysis model was developed in order to predict both eigenfrequencies and initial growth rate of combustion instabilities for lean premixed gas turbine combustors. As a first step, a model combustor and nozzle were selected and analytical linear equations for thermoacoustic waves were derived for a given combustion system. Then, methods showing how the equations can be used for analysis of the combustion instability were suggested. It was found that the prediction results showed a good agreement with the measurements. However, there were some limitation in growth rate predictions, which were related with over-simplification of flame structure, acoustic boundary conditions, and temperature distribution in the combustor.

가스터빈 모사 연소기에서 선회 확산 화염의 연소특성 해석 (Simulation of Methane Swirl Flame in a Gas Turbine Model Combustor)

  • 정대로;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.118-125
    • /
    • 2007
  • The firtst-order conditional moment closure (CMC) model is applied to CH4/air swirl diffusion flame in a gas turbine model combustor. The flow and mixing fields are calculated by fast chemistry assumption with SLFM library and a beta function pdf for mixture fraction. RNG k-e model is used to consider the swirl flame in a confined wall. Reacting scalar fields are calculated by elliptic CMC formulation with chemical kinetic mechanism, GRI Mech 3.0. Validation is done against measurement data for mean flow and scalar fields in the model combustor [1]. Results show reasonable agreement with the mean mixture fraction and its variance, while temperature is overpredicted as the level of local extinction increases. The second-order CMC model is needed to consider local extinction with considerable conditional fluctuations near the nozzle.

  • PDF

모형 가스터빈 연소기의 수치해석적 연구 (Numerical Simulation for Model Gas Turbine Combustor)

  • 김태한;최병륜
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1789-1798
    • /
    • 1994
  • This paper aimed for numerical simulation of complicated gas turbine combustor with swirler. For the convenience of numerical analysis, fuel nozzle and air linear hole areas of secondary and dilution zone, which are issued to jet stream, were simplified to equivalent areas of annular type. In other to solve these problems, imaginary source terms which are corresponded to supplied fuel amount were added to those of governing equation. Chemical equilibrium model of infinite reaction rate and $k-{\epsilon}-g$ model with the consideration of density fluctuation were applied. As the result, swirl intensity contributed to mixing of supplied fuel and air, and to speed up the flame velocity than no swirl condition. Temperature profiles were higher than experimental results at the upstream and lower at the downstream, but total energy balance was accomplished. As these properties showed the similar trend qualitatively, simplified simulation method was worth to apply to complicated combustor for predicting combustion characteristics.

Influences of Mach Number and Flow Incidence on Aerodynamic Losses of Steam Turbine Blade

  • Yoo, Seok-Jae;Ng, Wing Fai Ng
    • Journal of Mechanical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.456-465
    • /
    • 2000
  • An experiment was conducted to investigate the aerodynamic losses of high pressure steam turbine nozzle (526A) subjected to a large range of incident angles ($-34^{\circ}\;to\;26^{\circ}$) and exit Mach numbers (0.6 and 1.15). Measurements included downstream Pitot probe traverses, upstream total pressure, and end wall static pressures. Flow visualization techniques such as shadowgraph and color oil flow visualization were performed to complement the measured data. When the exit Mach number for nozzles increased from 0.9 to 1.1 the total pressure loss coefficient increased by a factor of 7 as compared to the total pressure losses measured at subsonic conditions ($M_2<0.9$). For the range of incidence tested, the effect of flow incidence on the total pressure losses is less pronounced. Based on the shadowgraphs taken during the experiment, it' s believed that the large increase in losses at transonic conditions is due to strong shock/ boundary layer interaction that may lead to flow separation on the blade suction surface.

  • PDF

가스터어빈형 연속류연소기의 유동에 관한 연구(II) -연소기내의 유동특성- (A Study on Flow Characterstics of Gas Turbine rvpe Combustor (II) - Flow Characteristics in Combustor -)

  • 이근오;지용욱;김형섭
    • 한국안전학회지
    • /
    • 제4권1호
    • /
    • pp.59-70
    • /
    • 1989
  • This paper deals with the experimental study on the flow characteristics in straight flow can type combustor which has been used for high pressure ratio gas turbine combustor. The author has investigated the effects of swirl number and secondary air hole arrays in axial position on the flow characteristics by adopting the tuft method and 5-Hole Pilot Tube. From these experiments, as the swirl number increases, the results obtained is that the area of recirculation zone becomes wide and the position of vortex-core region approaches to the near of fuel nozzle in the model combustor. The most favourable penetration is obtained when secondary air jet is introduced through the air holes distributed in the form of paralled two rows in axial position of model combustor.

  • PDF