• Title/Summary/Keyword: Turbine Effect

Search Result 897, Processing Time 0.031 seconds

PERFORMANCE ANALYSIS OF NREL PHASE VI WIND TURBINES UNDER VARIOUS SCALE CONDITIONS (스케일 변화에 따른 NREL PHASE VI 풍력터빈의 성능해석)

  • Park, Y.M.;Chang, B.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.155-158
    • /
    • 2006
  • In the present paper, the scale effects of two-dimensional airfoil and three-dimensional wind turbine were investigated by using FLUENT software. For two dimensional analysis, flow around S809 airfoil with various Reynolds No. and Mach No. conditions were simulated. For three dimensional analysis, scaled NREL Phase VI wind turbine models from 6% to 1,600% were simulated under the same tip speed ratio condition. Finally, aerodynamic comparisons between two-dimensional flow and three dimensional wind turbine flow are made for the feasibility study of scale effect corrections. Currently, KARI(Korea Aerospace Research Institute) is preparing for the wind tunnel test of 12% NREL Phase VI wind turbine and the performance analysis of the scaled NREL wind turbine model will be validated by the wind tunnel test.

  • PDF

Analysis of Dynamic Behavior of a Heat Recovery Steam Generator and Steam Turbine System (열회수 증기발생기와 증기터빈 시스템의 동적 거동 해석)

  • Park, Hyung-Joon;Kim, Tong-Seop;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.994-1001
    • /
    • 2000
  • The dynamic behavior of a single-pressure heat recovery steam generator and turbine system for the combined cycle power plant is simulated on the basis of one-dimensional unsteady governing equations. A water level control and a turbine power control are also included in the calculation routine. Transient response of the system to the variation of gas turbine exit condition is simulated and effect of the turbine power control on the system response is examined. In addition, the effect of the treatment of inertia terms(fluid inertia and thermal inertia of heat exchanger metal) on the simulated transient response is investigated.

Wells Turbine for Wave Energy Conversion -Effect of Trailing Edge Shape-

  • Takasaki, Katsuya;Tsunematsu, Tomohiro;Takao, Manabu;Alam, M M Ashraful;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.307-312
    • /
    • 2016
  • The present study reported of the use of special shaped blade to reduce the difference in pressure across the Wells turbine for wave energy conversion. The blade profile was composed of NACA0020 airfoils and trailing edge was notched like chevron. Experiments were performed investigating the influence of trailing edge shape on the turbine performance. Four notch depths were used to investigate the effect of depth of cut on the turbine performance. As results, by placing a notch-cut at the trailing edge of the blade, it was possible to reduce the pressure difference across the turbine without lowering the efficiency. In addition, the pressure difference substantially reduced at a constant rate with the increase of the cut ratio.

A Study on the Development of Cross-flow Type Vertical Axis Wind Turbine (횡류형 수직축 풍력터빈 개발에 관한 연구)

  • Hwang, Yeong-Cheol;Choi, Young-Do;Kim, Ill-Soo;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.493-493
    • /
    • 2009
  • Recently, small vertical axis wind turbine attracts attention because of its clean, renewable and abundant energy resources to develop. Therefore, a cross-flow type wind turbine is proposed for small wind turbine development in this study because the turbine has relatively simple structure and high possibility of applying to small wind turbine. The purpose of this study is to investigate the effect of the turbine‘s structural configuration on the performance and internal flow characteristics of the cross-flow turbine model using CFD analysis. The results show that guide nozzle should be adopted to improve the performance of the turbine. Optimization of the nozzle shape will be key-importance for the high performance of the turbine.

  • PDF

A Study on the Effect of Turbine Nozzle with Fillet on Performance Characteristics of a Gas Turbine Engine (터빈 노즐의 Fillet 설치에 따른 가스터빈 엔진의 성능 특성에 관한 연구)

  • Kim, Jae-Min;Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.542-545
    • /
    • 2009
  • In this study, the effect of turbine geometry on the overall performance of a gas turbine was investigated by computational fluid dynamics. Overall engine performance was predicted through a full engine simulation program which can predict the interactions of the compressor, the combustor and the turbine. The compressor and the turbine analysis code solves 2D and 3D Navier-Stokes equations respectively. The chemical equilibrium code was applied to simulate the combustor. The computations were performed for two different shapes of turbine nozzle. The nozzle shapes adopted a baseline blade and a blade with fillet.

  • PDF

Improved modeling of equivalent static loads on wind turbine towers

  • Gong, Kuangmin;Chen, Xinzhong
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.609-622
    • /
    • 2015
  • This study presents a dynamic response analysis of operational and parked wind turbines in order to gain better understanding of the roles of wind loads on turbine blades and tower in the generation of turbine response. The results show that the wind load on the tower has a negligible effect on the blade responses of both operational and parked turbines. Its effect on the tower response is also negligible for operational turbine, but is significant for parked turbine. The tower extreme responses due to the wind loads on blades and tower of parked turbine can be estimated separately and then combined for the estimation of total tower extreme response. In current wind turbine design practice, the tower extreme response due to the wind loads on blades is often represented as a static response under an equivalent static load in terms of a concentrated force and a moment at the tower top. This study presents an improved equivalent static load model with additional distributed inertial force on tower, and introduces the square-root-of-sum-square combination rule, which is shown to provide a better prediction of tower extreme response.

Effect of Intake Vortex Occurrence on the Performance of an Axial Hydraulic Turbine in Sihwa-Lake Tidal Power Plant, Korea

  • Kim, Jin-Hyuk;Heo, Man-Woong;Cha, Kyung-Hun;Kim, Kwang-Yong;Tac, Se-Wyan;Cho, Yong;Hwang, Jae-Chun;Collins, Maria
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.174-179
    • /
    • 2012
  • A numerical study to investigate the effect of intake vortex occurrence on the performance of an axial hydraulic turbine for generating tidal power energy in Sihwa-lake tidal power plant, Korea, is performed. Numerical analysis of the flow through an sxial hydraulic turbine is carried out by solving three-dimensional Reynolds-averaged Navier-Stokes dquations with the shear stress transport turbulence model. In the real turbine operation, the vortex flows are occurred in both the side corners around the intake of an axial hydraulic turbine due to the interaction between the inflow angle of water and intake structure. To analyze these vortex phenomena and to evaluate their impacts on the turbine performance, the internal flow fields of the axial hydraulic turbines with the different inflow angles are compared with their performances. As the results of numerical analysis, the vortex flows do not directly affect the turbine performance.

Study on the effect of wake on the performance and load of a downstream wind turbine (하류 풍력발전기의 성능 및 하중에 대한 후류영향 연구)

  • Son, Jaehoon;Paek, Insu;Yoo, Neungsoo;Nam, Yoonsu
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.98-106
    • /
    • 2014
  • The effect of wake on the performance and load of a downstream wind turbine on a floating platform is investigated with a computer simulation in this study. The floating platform consists of a square platform having a dimension of $200m{\times}200m$ with four 2 MW wind turbines installed. For the simulation, only two wind turbines in series with the wind direction were considered and the floating platform was assumed to be stationary due to its large size. Also, a commercial program based on multi-body dynamics and eddy viscosity wake model was used. It was found from simulation that the power from the downstream wind turbine could be reduced by more than 50% of the power from the upstream wind turbine. However, due to the increase in the turbulence intensity, the power is greater but more fluctuating than the power produced by a wind turbine experiencing the same wind speed without wake. Also, it was found that the load of the down stream wind turbine be comes lower than the load of the upstream wind turbine but higher than the load of a wind turbine experiencing the same wind speed without wake.

Performance Test of Turbine Flowmeter According to Temperature Variation (온도변화에 따른 터빈유량계의 성능 시험)

  • Nam, Ki Han;Park, Jong Ho;Kim, Hong Jip
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.47-52
    • /
    • 2017
  • In general industry, TFM(turbine flow meters) as measuring instruments having high reliability are widely used in the trade of petroleum and in the measurement of tap water and hot water. The TFM is performed calibration for using in the field and is mainly calibrated at room temperature. Since accuracy of TFM depends on Reynolds number of fluid, TFM is calibrated at same Reynolds number by changing flow rate. Furthermore, the TFM using a fluid of high temperature should have considered for other factors such as the thermal expansion of the parts and characteristics change is unknown changes in the turbine flow meter accordingly. In this paper, two turbine flowmeter are experimentally studied about characteristics change using the facilities which can change fluid temperature from 6 degree celsius to 90 degree celsius. As a result, the turbine flow meter can be calibrated to minimize the error characteristic at a similar temperature and the actual temperature.

The Effect of Rotor Geometry on the Performance of a Wells Turbine for Wave Energy Conversion (Part II : The Suitable Choice of Blade Design Factors) (파력발전용 웰즈터빈의 동익형상이 성능에 미치는 영향 (제2보 : 최적익형의 형상 제안))

  • Kim, Tai-Whan;Park, Sung-Soo;Setoguchi, T.;Takao, M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.55-61
    • /
    • 2003
  • This paper represents the effect of rotor geometry on the performance of a small-scale Wells turbine for wave energy conversion. In this study, four kinds of blade profile were selected from previous studies with regard to the blade profile of the Wells turbine. The experimental investigations have been performed for two solidities by model testing under steady flow conditions, and then the effect of blade profile on the running and starting characteristics under sinusoidal flow conditions have been investigated by a numerical simulation using a quasi-steady analysis. In addition, the effect of sweep on the turbine characteristics has been investigated for the cases of CA9 and HSIM 15-262123-1576. As a result, a suitable choice of these design factors has been suggested.