• Title/Summary/Keyword: Turbine Blade Design

Search Result 435, Processing Time 0.02 seconds

A Study on Design of Wind Turbine Blade and Aerodynamic Analysis (수평축 풍력터빈 블레이드의 공력해석 및 설계에 관한 연구)

  • Kim, J.H.;Kim, B.S.;Yoon, S.H.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.631-638
    • /
    • 2003
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio, structure, a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method. This process is programed by delphi-language. The program has any input values such as tip speed ratio, blade length, hub length, a section of shape and max lift-to-drag ratio. The program displays chord length and twist angle by input value and analyzes performance of the blade.

  • PDF

Performance Analysis of a Steam Injected Gas Turbine Combined Heat and Power System Considering Turbine Blade Temperature Change (터빈 블레이드 온도 변화를 고려한 증기분사 가스터빈 열병합발전 시스템의 성능해석)

  • Kang, Soo Young;Kim, Jeong Ho;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.18-24
    • /
    • 2012
  • This study simulated the operation of a steam injected gas turbine combined heat and power (CHP) system. A full off-design analysis was carried out to examine the change in the turbine blade temperature caused by steam injection. The prediction of turbine blade temperature was performed for the operating modes suggested in the previous study where the limitation of compressor surge margin reduction was analyzed in the steam injected gas turbine. It was found that both the fully injected and partially injected operations suggested in the previous study would cause the blade temperature to exceed that of the pure CHP operation and the under-firing operation would provide too low blade temperature. An optimal operation was proposed where both the turbine inlet temperature and the injection amount were modulated to keep both the reference turbine blade temperature and the minimum compressor surge margin. The modulation was intended to maintain a stable compressor operation and turbine life. It was shown that the optimal operation would provide a larger power output than the under-firing operation and a higher efficiency than the original partially injected operation.

Steam Turbine Rotating Blade Design Using Quasi-3 dimensional Flow Analysis (준 3차원 유동해석을 통한 증기 터빈의 회전익 설계)

  • Cho, S.H.;Kim, Y.S.;Kwon, G.B.;Im, H.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.303-308
    • /
    • 2001
  • A rotating blade of steam turbines is designed using blade design system. To minimize the design time. quasi three dimensional flow analysis code is adopted to calculate blade section. The blade section lies on a streamline determined by previous steam turbine design procedures. The blade design system makes a transform of streamline coordinates, (m, r$\theta$), to (m', $\theta$) coordinates and all design procedure except 3 dimensional stack-up is performed in the coordinates. Each designed blade section is stacked-up and whole 3 dimensional blade can be modified by correcting 2D section, repeatly. The full 3D numerial analysis for the one stage including designed rotating blade will be performed later

  • PDF

The Research of Airfoil Development for Wind Turbine Blade (풍력 블레이드용 익형 개발에 대한 연구)

  • Kim, Tae-Woo;Park, Sang-Gyoo;Kim, Jin-Bum;Kweon, Ki-Yeoung;Oh, Si-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.512-515
    • /
    • 2009
  • This research describes on airfoil shape design, crucial to core technique and algorithm optimization for the wind turbine blade development. We grasped the parameter to define the airfoil shape in the wind turbine blade and aircraft, and the important performance characteristic of the airfoil. The airfoil shape function is selected by studying which is suitable for wind turbine blade airfoil development. The selected method is verified by to compare the generated airfoil shape with base airfoil. The new airfoils were created by the selecting shape function based on the well-known airfoil for wind turbine blades. In addition, we performed aerodynamic analysis about the generated airfoils by XFOIL and estimated the point of difference in the airfoil shape parameter using the aerodynamic performance results which is compared with basic airfoil. This result data applies to the fundamental research for a wind turbine blade optimization design and accomplished the aerodynamic analysis manual.

  • PDF

Aerodynamic characteristics of a vertical axis wind turbine blade (수직축 풍력터빈 블레이드의 공기역학적 특성)

  • Shin, Jee-Young;Son, Young-Seok;Cha, Duk-Guen;Lee, Cheol-Gyun;Hwang, I-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.877-884
    • /
    • 2006
  • The objective of this study is to investigate the aerodynamic characteristics of a vertical axis wind turbine blade as the basic study of a design of a vertical axis wind turbine. The lift and drag coefficients of the various shape of the vortical axis wind turbine blades are analyzed and compared using the CFD code Fluent. To validate the numerical analysis, the predicted results of the Fluent are compared with those of the Xfoil code and the experimental results. We conclude that the program Fluent can be used to predict the aerodynamics of the wind turbine blade. By comparing the predicted results of the aerodynamic characteristics of the different shape of the blades, an appropriate shape of the blade is suggested to design the vortical axis wind turbine blade.

Aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structure in yaw condition

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1021-1040
    • /
    • 2015
  • An effective method to calculate aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structures in yaw condition is proposed. By a case study on a 5 MW large wind turbine, the finite element model of the wind turbine tower-blade coupled structure is established to obtain the modal information. The harmonic superposition method and modified blade-element momentum theory are used to calculate aerodynamic loads in yaw condition, in which the wind shear, tower shadow, tower-blade modal and aerodynamic interactions, and rotational effects are fully taken into account. The mode superposition method is used to calculate kinetic equation of wind turbine tower-blade coupled structure in time domain. The induced velocity and dynamic loads are updated through iterative loop, and the aeroelastic responses of large wind turbine tower-blade coupled system are then obtained. For completeness, the yaw effect and aeroelastic effect on aerodynamic loads and wind-induced responses are discussed in detail based on the calculating results.

Study on the Minimization of Shape Parameters by Reverse Design of an Axial Turbine Blade (축류형 터빈 익형의 역설계에 의한 최소 형상변수에 관한 연구)

  • Cho, Soo-Yong;Oh, Koon-Sup;Yoon, Eui-Soo;Choi, Bum-Seog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.30-37
    • /
    • 2000
  • Several reverse design methods are developed and applied to the suction or pressure surface for finding design values of blade geometry for a given axial turbine blade. Re-designed blade profiles using shape parameters are compared with measured blade data. Essential shape parameters for blade design are induced by the procedure of reverse design for best fitting. Characteristics of shape parameters are evaluated through the system design method and restriction conditions of structural stability or aerodynamic flow loss. Some of shape parameters i.e blade radius or exit blade angle etc., are classified to weakly adjustable shape parameters, otherwise strongly adjustable shape parameters which would be applied for controlling blade shape. Average deviation values between the measured data and re-designed blade using shape parameters are calculated for each design method. Comparing with the average deviation for a given blade geometry, minimum shape parameters required to design a blade geometry are obtained.

  • PDF

Structural Design of Multi-Megawatt Wind Turbine Blade by Classical Lamination Theory (복합재료 고전적층판 이론을 이용한 MW급 해상풍력 블레이드 구조설계)

  • Bae, Sung-Youl;Kim, Bum-Suk;Lee, Sang-Lae;Kim, Woo-June;Kim, Yun-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.147-151
    • /
    • 2014
  • This research presents a method for the initial structural design of a multi-megawatt wind turbine blade. The structural data for a 2-MW blade were applied as the blade structural characteristic data of the reference blade. Tenkinds of blade models were newly designed by replacing the spar cap axial GRRP with a GFRP and CFRP These terms should be defined. at different orientations. The axial stiffness coefficients of the newly designed models were made equal to the coefficient of the reference blade. The required numbers of layers in each section of blades were calculated, and the lay-up designs were based on these numbers. Verification results showed that the design method that used the structural data of the reference blade was appropriate for the initial structural design of a wind turbine blade.

A Study on the Effect of Port Area of Blade on the Performance of Francis Hydro Turbine (프란시스수차 러너 블레이드 출구면적이 성능에 미치는 영향)

  • Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.5-10
    • /
    • 2016
  • As a key component of a Francis turbine facility, the runner performance plays a vital role in the performance of the turbine. It is effective and successful to design a Francis turbine runner blade with good performance by one dimensional hydraulic design method. On the basis of one dimensional hydraulic analysis, there are a lot of parameters of the internal flow passage shapes determined by experience. Among those parameters, the effect of port area of blade on the performance of a Francis turbine is investigated in this study. A given Francis turbine model was selected for investigating the port area of blade on the performance. The result shows that the effect of port area of runner blade on the outflow angle from runner passage on the performance is quite significant. A correct exit flow angle reduces the energy loss at draft tube, which has the best efficiency of the turbine model.

Multi-MW Class Wind Turbine Blade Design Part I : Aero-Structure Design and Integrated Load Analysis (Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part I : 공력-구조 설계 및 통합하중해석)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.289-309
    • /
    • 2014
  • A rotor blade is an important device that converts kinetic energy of wind into mechanical energy. Rotor blades affect the power performance, energy conversion efficiency, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. This study examined the general blade design procedure for a wind turbine system and aero-structure design results for a 2-MW class wind turbine blade (KR40.1b). As suggested above, a rotor blade cannot be designed independently, because its ultimate and fatigue loads are highly dependent on system operating conditions. Thus, a reference 2-MW wind turbine system was also developed for the system integrated load calculations. All calculations were performed in accordance with IEC 61400-1 and the KR guidelines for wind turbines.