• Title/Summary/Keyword: Tunnel pressure

Search Result 1,410, Processing Time 0.023 seconds

A study on the establishment of pressure limit values of management monitoring in tunnel (터널 유지관리계측의 압력 관리기준치 설정에 관한 연구)

  • Woo, Jong-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • This study analyzed a monitoring data, based on the initial limit values of monitoring in subway, of earth pressure and pore water pressure. The data is obtained from 8 sections of the Seoul metropolitan subway line No 6, 7 and 9 in about 5 years. Also, a research is performed to set up the limit values of management monitoring, which will be applied to management monitoring in tunnel, through comparing the limit values of overseas management monitoring data and that of domestic management monitoring data. And the result obtained from comparison show that the safety phase is 60% of allowable pressure, the attention phase is 80% of allowable pressure and the precision analysis phase is 100% of allowable pressure. Also, we presented a method of management monitoring by the absolute value which can be easily applied easily in practical affairs.

Aerodynamic analysis for train operation without the effect of the passenger ear-discomfort in tunnel of new Seoul-Chunchon line (경춘선 1급 신설터널에서 열차승객의 이명감 없이 주행 가능한 열차속도에 대한 연구)

  • 김동현
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.495-502
    • /
    • 2000
  • For the tunnel design of the first class on new Seoul-Chunchon railway, we investigated for train speeds to run through tunnels without ear-discomfort of passenger in cabin by application of numerical analysis. Also we analyzed the effect of the wind speed induced by train in tunnel that is very harmful to the workers on railroad and the effect of the air-pressure fluctuations which get the fatigue to the tunnel lining and the car body.

  • PDF

A Study on the Near Construction Range Considering the Factors Affecting the Stability of Water Tunnel (수로터널 안정성에 미치는 요소를 고려한 근접시공범위에 대한 연구)

  • Mingyu Lee;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.5-12
    • /
    • 2023
  • Recently, due to urban development and expansion, construction plans have been increasing adjacent to existing tunnel structures such as subways, roads, and large pipelines. Structural plans adjacent to existing tunnels have different effects on tunnel stability depending on the construction method, degree of proximity, and location of new structures. In particular, the pressure water tunnel shows a very large difference from other road tunnels and railway tunnels in geotechnical characteristics and operation characteristics. Therefore, it is necessary to review the safety zone due to adjacent construction in consideration of the geotechnical characteristics of the water tunnel and the new sturure construction method. In this study, the existing tunnel safety zone standards were investigated. A stability evaluation performed numerical analysis considering the deterioration of concrete lining in operation and the characteristics of water tunnel. In addition, the impact of vibration caused by pile construction and blasting excavation of new structures was reviewed. Based on this, a pressure water tunnel safety zone was proposed in consideration of adjacent construction.

Experimental study on vehicle-induced unsteady flow in tunnel (터널에서 차량의 운행에 의해 생성되는 비정상 유동에 대한 실험적 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.411-417
    • /
    • 2009
  • The thermo-flow field in road tunnel is influenced by some facts such as piston effect of vehicle's move, operation of ventilation facilities, natural wind and buoyancy effect of fire plume. Among those, piston effect is one of primary causes for formation of air flow in road tunnel and has an effect on initial direction of smoke flow in tunnel fire. In this study to analyze the unsteady flow in the tunnel caused by the run of vehicle, the experimental study of vehicle-induced unsteady flow on a reduced-scale model tunnel is presented. While the three types of vehicle shape such as basic type of rectangular shape, diamond-head type and stair-tail type are changed, the pressure and air velocity variations with time are measured. The rising ratio of pressure and velocity are in order of "basic type of rectangular shape > stair-tail type > diamond-head type". The experimental results would be good data for development of a numerical method on the vehicle-induced unsteady tunnel flow.

Pressure distribution and aerodynamic forces on stationary box bridge sections

  • Ricciardelli, Francesco;Hangan, Horia
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.399-412
    • /
    • 2001
  • Simultaneous pressure and force measurements have been conducted on a stationary box deck section model for two configurations (namely without and with New Jersey traffic barriers) at various angles of incidence. The mean and fluctuating aerodynamic coefficients and pressure coefficients were derived, together with their spectra and with the coherence functions between the pressures and the total aerodynamic forces. The mean aerodynamic coefficients derived from force measurements are first compared with those derived from the integration of the pressures on the deck surface. Correlation between forces and local pressures are determined in order to gain insight on the wind excitation mechanism. The influence of the angle of incidence on the pressure distribution and on the fluctuating forces is also analysed. It is evidenced how particular deck section areas are more responsible for the aerodynamic excitation of the deck.

Simulation of multivariate non-Gaussian wind pressure on spherical latticed structures

  • Aung, Nyi Nyi;Ye, Jihong;Masters, F.J.
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.223-245
    • /
    • 2012
  • Multivariate simulation is necessary for cases where non-Gaussian processes at spatially distributed locations are desired. A simulation algorithm to generate non-Gaussian wind pressure fields is proposed. Gaussian sample fields are generated based on the spectral representation method using wavelet transforms method and then mapped into non-Gaussian sample fields with the aid of a CDF mapping transformation technique. To illustrate the procedure, this approach is applied to experimental results obtained from wind tunnel tests on the domes. A multivariate Gaussian simulation technique is developed and then extended to multivariate non-Gaussian simulation using the CDF mapping technique. It is proposed to develop a new wavelet-based CDF mapping technique for simulation of multivariate non-Gaussian wind pressure process. The efficiency of the proposed methodology for the non-Gaussian nature of pressure fluctuations on separated flow regions of different rise-span ratios of domes is also discussed.

A study on the equivalent static wind load estimation of large span roofs (대스팬 지붕구조물의 등가정적 풍하중 산정에 관한 연구)

  • Kim, Dae-Young;Kim, Ji-Young;Kim, Han-Young;Lee, Myung-Ho;Kim, Sang-Dae
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.245-251
    • /
    • 2004
  • This paper discuss the conditionally sampled actual wind pressure distributions causing peak quasi-static wind loads in the large span roofs using the wind pressures at many locations on dome models measured simultaneously in a wind tunnel. The actual extreme pressure distributions are compared itk load-response-correlation (LRC) method and the quasi-steady pressure distributions. Based on the results, the reason for the discrepancy in the LRC pressure distribution and the actual extreme pressure distribution are discussed. Futhermore, a brief discussion is made of the equivalent static wind load estimation for the large span roofs.

  • PDF

Estimation of extreme wind pressure coefficient in a zone by multivariate extreme value theory

  • Yang, Qingshan;Li, Danyu;Hui, Yi;Law, Siu-Seong
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.197-207
    • /
    • 2020
  • Knowledge on the design value of extreme wind pressure coefficients (EWPC) of a specific zone of buildings is essential for the wind-resistant capacity of claddings. This paper presents a method to estimate the representative EWPC introducing the multivariate extreme value model. The spatial correlations of the extreme wind pressures at different locations can be consider through the multivariate extreme value. The moving average method is also adopted in this method, so that the measured point pressure can be converted to wind pressure of an area. The proposed method is applied to wind tunnel test results of a large flat roof building. Comparison with existing methods shows that it can give a good estimation for all target zones with different sizes.

Wind loads on industrial solar panel arrays and supporting roof structure

  • Wood, Graeme S.;Denoon, Roy O.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.4 no.6
    • /
    • pp.481-494
    • /
    • 2001
  • Wind tunnel pressure tests were conducted on a 1:100 scale model of a large industrial building with solar panels mounted parallel to the flat roof. The model form was chosen to have the same aspect ratio as the Texas Tech University test building. Pressures were simultaneously measured on the roof, and on the topside and underside of the solar panel, the latter two combining to produce a nett panel pressure. For the configurations tested, varying both the lateral spacing between the panels and the height of the panels above the roof surface had little influence on the measured pressures, except at the leading edge. The orientation of the panels with respect to the wind flow and the proximity of the panels to the leading edge had a greater effect on the measured pressure distributions. The pressure coefficients are compared against the results for the roof with no panels attached. The model results with no panels attached agreed well with full-scale results from the Texas Tech test building.

The proper width of the intermittent trough for tunnel enlarging

  • Tan, Yi-Zhong;Liu, Yuan-Xue;Li, Zhong-You
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.455-467
    • /
    • 2014
  • As the traffic increased, the original capacity of the tunnel has been unable to meet the needs, so it must be expanded. Based on the features of tunnel, the intermittent trough method must be supposed for tunnel enlarging. Under the situation on the buried deep of the tunnel, it could be used the reasonable arch axis model to descript the past covered rock pressure for mechanism calculating of self-bearing arch. Then establish the three-arch combination effectible model for the analysis which is relied on the tunneling enlarging to Chongqing Yu-Zhou tunnel. It has determined the proper width for the intermittent trough in shallow buried tunnel enlarging.