• 제목/요약/키워드: Tunnel fire

검색결과 479건 처리시간 0.038초

도로터널내 화재 발생시 매연 제거를 위한 모델 해석 (A Model-Analysis for Removal of Fire Fumes in a Road Tunnel during a Fire Disaster)

  • 윤성욱;이희근
    • 터널과지하공간
    • /
    • 제7권2호
    • /
    • pp.100-107
    • /
    • 1997
  • In case of a fire outbreak in a uni-directional road tunnel, the flow of traffic immediately behind the fire disaster will be stalled all the way back to the entrance of the tunnel. Furthermore, when the vehicle passengers try to flee away from the fire toward the entrance of the tunnel, the extremely hot fume that propagates in the same direction will be fatal to the multitudes evacuating, but may also cause damage to the ventilation equipments and the vehicles, compounding the evacuation process. This paper will present the 3-dimensional modelling analysis of the preventive measures of such a fume propagation in the same direction as the evacuating passengers. For the analysis, the fire hazard was assumed to be a perfect combustion of methane gas injected through the 1 m X 2 m nozzle in the middle of the tunnel, and the product of $CO_2$ as the indicator of the fume propagation. From the research results, when the fire hazard occurred in middle of the 400 m road tunnel, the air density decreased around the fire point, and the maximum temperatures were 996 K and 499 K at 210 m and 350 m locations, respectively, 60 seconds after fire disaster occurred, when the fumes were driven out only towards the exit-direction of the tunnel. By tracing the increase of $CO_2$ level over 1% mole fraction, the minimum longitudinal ventilation velocity was found to be 2.40 m/sec. Furthermore, through Analysis of the temperature distribution graphs, and observation of the cross-sectional distribution of $CO_2$ over 1% mole fraction, it was found that the fume did not mix with the air, but rather moved far in a laminar flow towards exit of the tunnel.

  • PDF

터널 내 화재발생시 구난역 내의 연기 거동에 미치는 설계된 환기 영향에 대한 실험적 연구 (Experimental Study on the Designed Ventilation Effect on the Smoke Movement at Rescue Station fire in Railway Tunnel)

  • 김동운;이성혁;유홍선;윤성욱
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.163-167
    • /
    • 2008
  • In this study, the 1/35 reduced-scale model experiment were conducted to investigate designed ventilation effect on the smoke movement at rescue station fire in railway tunnel. A model tunnel with 2 mm thick, 10 m long, 0.19 m high and 0.26 m was made by using Froude number scaling law. The cross-passages installing escape door at the center were connected between incident tunnel and rescue tunnel. The n-heptane pool fires with heat release rate 698.97W were used as fire source. The fire source was located at the center and portal of incident tunnel as worst case. A operating ventilation system extracted smoke amount of 0.015 cms(cubic meters per second). The smoke temperature and CO gas concentration in cross-passage were measured to verify designed ventilation system. The result showed that, at center fire case without ventilation, smoke did not propagate to rescues station. In portal fire case, smoke spreaded to rescues station without ventilation. But smoke did not propagated to rescues station with designed ventilation.

  • PDF

도로터널내 화재에 따른 터널구조체의 안정성 평가를 위한 시간-온도곡선의 적용 (Applied Time-Temperature Curve for Safety Evaluation in the Road Tunnel by Fire)

  • 원종필;최민정;장창일;이상우
    • 대한토목학회논문집
    • /
    • 제29권5A호
    • /
    • pp.551-555
    • /
    • 2009
  • 본 연구는 도로터널 내 화재시 콘크리트 구조체의 내화성능을 평가하기 위한 기준을 제시하고자 실시하였다. 현재 국내에서는 지형특성 및 환경친화적인 도로건설로 도로 터널의 수가 빠른 속도로 증가하며, 터널연장이 길어짐에 따라 터널 내 화재사고가 갈수록 높아지고 있는 상황이다. 하지만 우리나라에서는 터널 화재에 대한 적합한 시간-온도 곡선을 규정하지 못하고 있는 실정이다. 따라서 본 연구에서는 국내 도로의 통행량, 차량 종류등을 고려한 열방출율을 기초로 외국에서 제시된 시간-온도 곡선을 검토해 보았으며 적합한 설계화재 모델을 적용하였다. 또한 적용된 도로터널의 설계화재모델에 따른 수치해석을 통하여 터널 구조체의 화재시 성능을 검토하였다.

소방대의 현장접근성 강화를 위한 설비의 개선방안 (The Way for improvement of facility to strengthen accessibility of the site for fire department)

  • 오택흠;성재만;박찬석
    • 대한안전경영과학회지
    • /
    • 제14권3호
    • /
    • pp.67-75
    • /
    • 2012
  • Because recently(July 14, 2011) fire occurred in the engine room of a moving taxi under Namsan Tunnel 1, 51 vehicles' driver and more than 250 passengers in the road tunnel were urgently evacuated with abandoned vehicles. Vehicle fires in Namsan Tunnel that day, Sufferers struggled to escape quickly difficult to escape the two-way by abandoned vehicles on the road and to fear many casualties by using vehicle fuel and combustible interior and the driver who is ignorant of vehicle accident continuous entered in the road tunnel had accessibility the site of fire department was more difficult. In this study, It is to investigate structure and basic materials, such as fire extinguish equipment and facilities for damage prevention and to analyze the problems and to plan improvement method of fire extinguish equipment, facilities for damage prevention and transportation facilities(Large traffic signs, Breaker, etc.) on the Namsan Tunnel that in the long-term plan is prepared to strengthen for accessibility of the site of fire department in case of Vehicle's fire.

Effect of tunnel fire: Analysis and remedial measures

  • Choubey, Bishwajeet;Dutta, Sekhar C.;Kumar, Virendra
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.701-709
    • /
    • 2021
  • The paper aims at improving the understanding and mitigating the effects of tunnel fires that may breakout due to the burning fuel and/or explosion within the tunnel. This study particularly focuses on the behavior of the commonly used horse shoe geometry of tunnel systems. The problem has been obtained using an adequate well-established program incorporating the Lagrangian approach. A transient-thermo-coupled static structural analysis is carried out. The effects of radiation and convection to the outer walls of the tunnel is studied. The paper also presents the impact of the hazard on the structural integrity of the tunnel. A methodology is proposed to study the tunnel fire using a model which uses equivalent steel sheet to represent the presence of reinforcements to improve the computational efficiency with adequate validation. A parametric study has been carried out and the effect of suitable lining property for mitigating the fire hazard is arrived at. Detailed analysis is done for the threshold limits of the properties of the lining material to check if it is acceptable in all aspects for the integrity of the tunnel. The study may prove useful for developing insights for ensuring tunnel fire safety. To conduct such studies experimentally are tremendously costly but are required to gain confidence. But, scaled models, as well as loading and testing conditions, cannot be studied by many trials experimentally as the cost will shoot up sharply. In this context, the results obtained from such computational studies with a feasible variation of various combinations of parameters may act as a set of guidelines to freeze the adequate combination of various parameters to conduct one or two costly experiments for confidence building.

터널 화재시 터널 단면의 종횡비에 따른 연기 거동에 관한 (An Experimental Study of Smoke Movement in Tunnel Fires with Aspect Ratio of Tunnel Cross Section)

  • 이성룡;유홍선;김충익
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.115-120
    • /
    • 2003
  • In this study, smoke movement in tunnel fires was investigated with various aspect ratio(0.5, 0.667, 1.0, 1.5, 2.0) of tunnel cross section. Reduced-scale experiments were carried out under the Froude scaling using 8.27 kW ethanol pool fire. Temperatures were measured under the ceiling and vertical direction along the center of the tunnel. Smoke front velocity and temperature decrease rate were reduced as higher aspect ratio of the tunnel cross-section. Smoke movement was evaluated by analysis of vertical temperature distribution 3 m downstream from the fire source. Elevation of smoke interface according to N percent rule was under about 60% of tunnel height.

  • PDF

CHARACTERISTICS OF SMOKE CONCENTRATION PROFILES WITH UNDERGROUND UTILITY TUNNEL FIRE

  • Kim Hong Sik;Hwang In Ju;Kim Youn-Jea
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.94-98
    • /
    • 2005
  • Accurate prediction of the fire-induced air velocity, temperature and smoke flow in underground utility tunnel becomes more important for the optimization of design and placement of heat and smoke detectors. In order to improve the safety of underground utility tunnel systems, the behaviors of fire-induced smoke flow and temperature distributions are investigated. Especially, two different cross-sectional shapes of tunnel, such as rectangular and circular types are modeled. Also, fire source is modeled as a volumetric heat source. Three-dimensional thermal-flow characteristics in an underground tunnel are solved by means of FVM using SIMPLE algorithm. The effects of shape geometry on the fire-induced flow characteristics are graphically depicted. It is desirable that heat and smoke detectors are installed on the cables and the top of the wall.

남산 1·2·3호 터널사고에 대한 재난대응방안 (Namsan 1.2.3 Tunnel accident disaster countermeasures)

  • 이정일
    • 대한안전경영과학회지
    • /
    • 제15권1호
    • /
    • pp.69-75
    • /
    • 2013
  • Namsan road are taxis in the engine room fires (07/14/2011 18:05) in the tunnel, and the driver of the vehicle was 100 passenger car and more than 500 evacuated were disasters. Pole road vehicles within the tunnel if there is a fire tunnel fire occurred at a two-way evacuation difficult and rapid evacuation is difficult and mass casualties are concerned, the number of casualties is feared. In this study, by considering the problems and improve the Namsan 1,2,3 Tunnel In case of fire, the best disaster response is to come up with ways.

종류식 터널내 소요 환기량에 의한 터널환기 및 화재 시뮬레이션 연구 ( 임고 4 터널 ) (Fire Simulation Study and Tunnel Ventilation of Requirement in the Longitudinal Tunnel. (In Yimgo-4th Tunnel))

  • 채경희
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1378-1385
    • /
    • 2008
  • This study is aimed to analyze the flow patterns and thermal characteristics by computer simulation under the variations of fire strength for Daegu-Pahang Yimgo-4th tunnel, from which flow and heat distributions are predicted in the longitudinal tunnel. Though the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

도로터널 환기/제연 시스템 시뮬레이션 (A NUMERICAL STUDY OF THE VENTILATION AND FIRE SIMULATION IN A ROAD TUNNEL)

  • 박종택;원찬식;허남건;차철현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.207-212
    • /
    • 2005
  • In designing a ventilation system of a road tunnel, a possibility of using the system as a smoke control system in case of a tunnel fire has to be considered. In the present study, a numerical simulation on ventilation system is performed considering jet fan operations and moving traffic. A fire-mode operation by reversing some fan operations in case of a tunnel fire is also simulated. The results show that ventilation operation can control the pollutants effectively, and fire-mode operation can control smoke and temperature effectively to prevent a disaster.

  • PDF