• 제목/요약/키워드: Tunnel field-effect transistor (TFET)

검색결과 26건 처리시간 0.025초

Triple-gate Tunnel FETs Encapsulated with an Epitaxial Layer for High Current Drivability

  • Lee, Jang Woo;Choi, Woo Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.271-276
    • /
    • 2017
  • The triple-gate tunnel FETs encapsulated with an epitaxial layer (EL TFETs) is proposed to lower the subthreshold swing of the TFETs. Furthermore, the band-to-band tunneling based on the maximum electric-field can occur thanks to the epitaxial layer wrapping the Si fin. The performance and mechanism of the EL TFETs are compared with the previously proposed TFET based on simulation.

VT-Modulation of Planar Tunnel Field-Effect Transistors with Ground-Plane under Ultrathin Body and Bottom Oxide

  • Sun, Min-Chul;Kim, Hyun Woo;Kim, Hyungjin;Kim, Sang Wan;Kim, Garam;Lee, Jong-Ho;Shin, Hyungcheol;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권2호
    • /
    • pp.139-145
    • /
    • 2014
  • Control of threshold voltage ($V_T$) by ground-plane (GP) technique for planar tunnel field-effect transistor (TFET) is studied for the first time using TCAD simulation method. Although GP technique appears to be similarly useful for the TFET as for the metal-oxide-semiconductor field-effect transistor (MOSFET), some unique behaviors such as the small controllability under weak ground doping and dependence on the dopant polarity are also observed. For $V_T$-modulation larger than 100 mV, heavy ground doping over $1{\times}10^{20}cm^{-3}$ or back biasing scheme is preferred in case of TFETs. Polarity dependence is explained with a mechanism similar to the punch-through of MOSFETs. In spite of some minor differences, this result shows that both MOSFETs and TFETs can share common $V_T$-control scheme when these devices are co-integrated.

Compact Capacitance Model of L-Shape Tunnel Field-Effect Transistors for Circuit Simulation

  • Yu, Yun Seop;Najam, Faraz
    • Journal of information and communication convergence engineering
    • /
    • 제19권4호
    • /
    • pp.263-268
    • /
    • 2021
  • Although the compact capacitance model of point tunneling types of tunneling field-effect transistors (TFET) has been proposed, those of line tunneling types of TFETs have not been reported. In this study, a compact capacitance model of an L-shaped TFET (LTFET), a line tunneling type of TFET, is proposed using the previously developed surface potentials and current models of P- and L-type LTFETs. The Verilog-A LTFET model for simulation program with integrated circuit emphasis (SPICE) was also developed to verify the validation of the compact LTFET model including the capacitance model. The SPICE simulation results using the Verilog-A LTFET were compared to those obtained using a technology computer-aided-design (TCAD) device simulator. The current-voltage characteristics and capacitance-voltage characteristics of N and P-LTFETs were consistent for all operational bias. The voltage transfer characteristics and transient response of the inverter circuit comprising N and P-LTFETs in series were verified with the TCAD mixed-mode simulation results.

4가지 무접합 나노선 터널 트랜지스터의 기판 변화에 따른 특성 분석 (Characteristic Analysis of 4-Types of Junctionless Nanowire Field-Effect Transistor)

  • 오종혁;이주찬;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.381-382
    • /
    • 2018
  • 무접합 나노선 터널 전계 효과 트렌지스터(junctionless nanowire tunnel field-effect transistor; JLNW-TFET)에서 소스(p+), 채널(i), 드레인(n) 물질으로 실리콘 및 게르마늄을 사용하여 이 구조에 대한 문턱전압 이하 기울기(subthreshold swings; SS)와 구동전류를 관찰했다. 소스-채널을 게르마늄-실리콘일 때 실리콘-실리콘, 실리콘-게르마늄, 게르마늄-게르마늄 구조보다 구동전류가 최대 1000배 증가하였고, 실리콘-실리콘 구조가 다른 구조에 비해 최소 SS가 최대 5배 이상 감소하였다.

  • PDF

터널링 전계효과 트랜지스터로 구성된 3차원 적층형 집적회로에 대한 연구 (Study of monolithic 3D integrated-circuit consisting of tunneling field-effect transistors)

  • 유윤섭
    • 한국정보통신학회논문지
    • /
    • 제26권5호
    • /
    • pp.682-687
    • /
    • 2022
  • 터널링 전계효과 트랜지스터(tunneling field-effect transistor; TFET)로 적층된 3차원 적층형 집적회로(monolithic 3D integrated-circuit; M3DIC)에 대한 연구 결과를 소개한다. TFET는 MOSFET(metal-oxide-semiconductor field-effect transistor)와 달리 소스와 드레인이 비대칭 구조이므로 대칭구조인 MOSFET의 레이아웃과 다르게 설계된다. 비대칭 구조로 인해서 다양한 인버터 구조 및 레이아웃이 가능하고, 그 중에서 최소 금속선 레이어를 가지는 단순한 인버터 구조를 제안한다. 비대칭 구조의 TFET를 순차적으로 적층한 논리 게이트인 NAND 게이트, NOR 게이트 등의 M3DIC의 구조와 레이아웃을 제안된 인버터 구조를 바탕으로 제안한다. 소자와 회로 시뮬레이터를 이용해서 제안된 M3D 논리게이트의 전압전달특성 결과를 조사하고 각 논리 게이트의 동작을 검증한다. M3D 논리 게이트 별 셀 면적은 2차원 평면의 논리게이트에 비해서 약 50% 감소된다.

Dependency of Tunneling Field-Effect Transistor(TFET) Characteristics on Operation Regions

  • Lee, Min-Jin;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권4호
    • /
    • pp.287-294
    • /
    • 2011
  • In this paper, two competing mechanisms determining drain current of tunneling field-effect transistors (TFETs) have been investigated such as band-to-band tunneling and drift. Based on the results, the characteristics of TFETs have been discussed in the tunneling-dominant and drift-dominant region.

Device and Circuit Level Performance Comparison of Tunnel FET Architectures and Impact of Heterogeneous Gate Dielectric

  • Narang, Rakhi;Saxena, Manoj;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권3호
    • /
    • pp.224-236
    • /
    • 2013
  • This work presents a comparative study of four Double Gate tunnel FET (DG-TFET) architectures: conventional p-i-n DG-TFET, p-n-p-n DG-TFET, a gate dielectric engineered Heterogate (HG) p-i-n DG-TFET and a new device architecture with the merits of both Hetero Gate and p-n-p-n, i.e. HG p-n-p-n DG-TFET. It has been shown that, the problem of high gate capacitance along with low ON current for a p-i-n TFET, which severely hampers the circuit performance of TFET can be overcome by using a p-n-p-n TFET with a dielectric engineered Hetero-gate architecture (i.e. HG p-n-p-n). P-n-p-n architecture improves the ON current and the heterogeneous dielectric helps in reducing the gate capacitance and suppressing the ambipolar behavior. Moreover, the HG architecture does not degrade the output characteristics, unlike the gate drain underlap architecture, and effectively reduces the gate capacitance.

Schottky Barrier Tunnel Field-Effect Transistor using Spacer Technique

  • Kim, Hyun Woo;Kim, Jong Pil;Kim, Sang Wan;Sun, Min-Chul;Kim, Garam;Kim, Jang Hyun;Park, Euyhwan;Kim, Hyungjin;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.572-578
    • /
    • 2014
  • In order to overcome small current drivability of a tunneling field-effect transistor (TFET), a TFET using Schottky barrier (SBTFET) is proposed. The proposed device has a metal source region unlike the conventional TFET. In addition, dopant segregation technology between the source and channel region is applied to reduce tunneling resistance. For TFET fabrication, spacer technique is adopted to enable self-aligned process because the SBTFET consists of source and drain with different types. Also the control device which has a doped source region is made to compare the electrical characteristics with those of the SBTFET. From the measured results, the SBTFET shows better on/off switching property than the control device. The observed drive current is larger than those of the previously reported TFET. Also, short-channel effects (SCEs) are investigated through the comparison of electrical characteristics between the long- and short-channel SBTFET.

Dual Gate L-Shaped Field-Effect-Transistor for Steep Subthreshold Slope

  • Najam, Faraz;Yu, Yun Seop
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.171-172
    • /
    • 2018
  • Dual gate L-shaped tunnel field-effect-transistor (DG-LTFET) is presented in this study. DG-LTFET achieves near vertical subthreshold slope (SS) and its ON current is also found to be higher then both conventional TFET and LTFET. This device could serve as a potential replacement for conventional complimentary metal-oxide-semiconductor (CMOS) technology.

  • PDF

Analytical Surface Potential Model with TCAD Simulation Verification for Evaluation of Surrounding Gate TFET

  • Samuel, T.S. Arun;Balamurugan, N.B.;Niranjana, T.;Samyuktha, B.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.655-661
    • /
    • 2014
  • In this paper, a new two dimensional (2D) analytical modeling and simulation for a surrounding gate tunnel field effect transistor (TFET) is proposed. The Parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions and analytical expressions for surface potential and electric field are derived. This electric field distribution is further used to calculate the tunneling generation rate and thus we numerically extract the tunneling current. The results show a significant improvement in on-current characteristics while short channel effects are greatly reduced. Effectiveness of the proposed model has been confirmed by comparing the analytical results with the TCAD simulation results.