• Title/Summary/Keyword: Tunnel excavation

검색결과 991건 처리시간 0.247초

Upheaveal Behaviour of Tunnel Bottom in the Weatherd Fracture Zone under Tunnel Excavation (터널 굴착 중 바닥부 연약대로 인한 터널 융기 거동 사례 분석)

  • Chang, Yongchai;Kim, Nagyoung;Jin, Kyudong;Son, Yongmin
    • Journal of the Korean GEO-environmental Society
    • /
    • 제15권6호
    • /
    • pp.49-56
    • /
    • 2014
  • The stability of tunnel construction depends entirely on the characteristics of the soil strength. If the soil strength is weak, collapse of tunnel occurs frequently under construction. In general, it copes with collapse by conducting half section excavation or reinforcement in advance under these conditions. Nevertheless, it can be collapsed under upper section excavation in the weathered fracture zone and it can be recovered through the application of reinforcement. As it has a bad influence on the upper section in case of upheaveal of tunnel bottom, it can be adversely affected on the overall stability of the tunnel. Thus, an in-depth review of reinforcement is needed in poor bottom ground. As the practices that has a bad affect on the stability of the tunnel due to upheaveal of tunnel bottom is increasing, research is needed for applicable standards for reinforcement. In this paper, it were investigated at actual field cases of upheaveal of bottom ground and characteristics of behavior and reinforcement measures were analyzed.

Evaluation of Structural Stability of Tunnel due to Adjacent Excavation on Urban Transit (도시철도 인접굴착공사에 따른 터널구조물의 구조 안정성 평가)

  • Choi, Jung-Youl;Lee, Ho-hyun;Kang, You-Song;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • 제6권2호
    • /
    • pp.503-508
    • /
    • 2020
  • The three-dimensional precision numerical analysis was performed using the finite element model applied with the railway track model consisting of rails, As a result of analyzing the track deformation level of the existing tunnel due to the excavation work adjacent to the urban transit, it was found that the evaluation criteria (allowed values) of conventional railways lines were satisfied. Based on the numerical analysis, it was analyzed that the results of the prediction of the tunnel structural stability of due to the excavation work and the level of the tunnel deformation occurring at the actual site could be approximated as closely as possible.

Face stability analysis of large-diameter underwater shield tunnel in soft-hard uneven strata under fluid-solid coupling

  • Shanglong Zhang;Xuansheng Cheng;Xinhai Zhou;Yue Sun
    • Geomechanics and Engineering
    • /
    • 제32권2호
    • /
    • pp.145-157
    • /
    • 2023
  • This paper aims at investigating the face stability of large-diameter underwater shield tunnels considering seepage in soft-hard uneven strata. Using the kinematic approach of limit upper-bound analysis, the analytical solution of limit supporting pressure on the tunnel face considering seepage was obtained based on a logarithmic spiral collapsed body in uneven strata. The stability analysis method of the excavation face with different soft- and hard-stratum ratios was explored and validated. Moreover, the effects of water level and burial depth on tunnel face stability were discussed. The results show the effect of seepage on the excavation face stability can be accounted as the seepage force on the excavation face and the seepage force of pore water in instability body. When the thickness ratio of hard soil layer within the excavation face exceeds 1/6D, the interface of the soft and hard soil layer can be placed at tunnel axis during stability analysis. The reliability of the analytical solution of the limit supporting pressure is validated by numerical method and literature methods. The increase of water level causes the instability of upper soft soil layer firstly due to the higher seepage force. With the rise of burial depth, the horizontal displacement of the upper soft soil decreases and the limit supporting pressure changes little because of soil arching effect.

A development of the ground settlement evaluation chart on tunnel excavation (터널굴착에 따른 지반침하 예측을 위한 침하량 평가도표 개발)

  • Park, Chi Myeon;You, Kwang-Ho;Lee, Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제20권6호
    • /
    • pp.1105-1123
    • /
    • 2018
  • The main risk factors of tunnel excavation through urban areas are ground settlement and surface sink which caused by ground conditions, excavation method, groundwater condition, excavation length, support method, etc. In the process of ground settlement assessment, the numerical analysis should be conducted considering the displacement and stress due to tunnel excavation. Therefore a technique that can simplify such process and easily evaluate the influence of tunnel excavation is needed. This study focused on the tunnelling-induced ground settlement which is main consideration of underground safety impact assessment. The parametric numerical analyses were performed considering such parameters as ground conditions, tunnel depth, and lateral distance from tunnel center line, etc. A simplified ground settlement evaluation chart was suggested by analyzing tendency of ground subsidence, lateral influence area and character by depth. The applicability of the suggested settlement evaluation chart was verified by comparative numerical analysis of settlement characteristics.

Modeling the Effect of Water, Excavation Sequence and Reinforcement on the Response of Tunnels

  • Kim, Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • 제15권3호
    • /
    • pp.161-176
    • /
    • 1999
  • A powerful numerical method that can be used for modeling rock-structure interaction is the Discontinuous Deformation Analysis (D D A) method developed by Shi in 1988. In this method, rock masses are treated as systems of finite and deformable blocks. Large rock mass deformations and block movements are allowed. Although various extensions of the D D A method have been proposed in the literature, the method is not capable of modeling water-block interaction, sequential loading or unloading and rock reinforcement; three features that are needed when modeling surface or underground excavation in fractured rock. This paper presents three new extensions to the D D A method. The extensions consist of hydro-mechanical coupling between rock blocks and steady water flow in fractures, sequential loading or unloading, and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the D D A method with the new extensions are presented. Simulations of the underground excavation of the \ulcornerUnju Tunnel\ulcorner in Korea were carried out to evaluate the influence of fracture flow, excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that fracture flow and improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the D D A program with the three new extensions can now be used as a practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically.

  • PDF

Modelling for TBM Performance Prediction (TBM 굴진성능 예측을 위한 모델링)

  • 이석원;최순욱
    • Tunnel and Underground Space
    • /
    • 제13권6호
    • /
    • pp.413-420
    • /
    • 2003
  • Modelling for performance prediction of mechanical excavation is discussed in this paper. Two of the most successful performance prediction models, namely theoretical based CSM model and empirical based NTH model, are discussed and compared. The basic principles of rock cutting with disc cutters, especially Constant Cross Section cutters, are discussed and a theoretical model developed is introduced to provide an estimate of disc cutting forces as a function of rock properties and the cutting geometry. General modelling logic for the performance prediction of mechanical excavation is introduced. CSM computer model developed and currently used at the Earth Mechanics Institute(EMI) of the Colorado School of Mines is discussed. Example of input and output of this model is illustrated for the typical operation by Tunnel Boring Machine(TBM).

Evaluation of the applicability of TBM performance prediction models based on field data (현장 굴진자료 분석에 의한 TBM 성능예측모델의 적용성 평가)

  • Oh, Ki-Youl;Chang, Soo-Ho;Kim, Sang-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.803-812
    • /
    • 2008
  • Along with the increasing demand for automatic and mechanical tunnel excavation methods in Korea, the Tunnel Boring Machine (TBM) method of tunnel excavation has become increasingly popular. However, in spite of this rising demand, few studies have been performed on the TBM method, in Korea. For this reason, this study focused on evaluation of the applicability of TBM performance prediction models based on field data in order to contribute to the basic and essential parts of TBM designation and the TBM method of tunnel excavation in Korea. These rock properties can be defined as the mechanical and physical factors of rock that have an influence on a disc cutter's ability to cut rock, and provide information for the evaluation of the applicability of field data. Based on outcomes from these tests, applicability of the prediction model was evaluated and the predicted performance of a TBM was compared with real field data obtained from four different TBM construction sites in Korea.

  • PDF

Determination of the Construction Method for Young Dong Tunnel by Risk Assessment (위험도 분석기법에 의한 영동선 터널의 굴착공법 결정사례)

  • Kim, Yong-Il;Hencher, S.R.;Yoon, Young-Hoon;Cho, Sang-Kook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제4권1호
    • /
    • pp.13-25
    • /
    • 2002
  • The construction method for Young Dong Tunnel has been chosen following detailed risk assessment. In this paper, the specific risks to the project programme, associated with adopting either mechanical excavation in the form of a shielded TBM, or drill and blast excavation methods, are assessed. From the risk assessment results, and taking other important factors into account, such as project sensitivity and local experience, the recommendation is made that the relatively low risk drill-and-blast method is the most appropriate for construction of Young Dong Tunnel.

  • PDF

Determination of the Construction Method for the Young Dong Tunnel by Risk Assessment (위험도 분석기법에 의한 영동선 터널의 굴착공법 결정사례)

  • Kim, Yong-Il;S. R. Hencher;Yoon, Young-Hoon;Cho, Sang-Kook
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.200-206
    • /
    • 2002
  • The construction method for the Young Dong Tunnel has been chosen following detailed risk assessment. In this paper, the specific risks to the project programme, associated with adopting either mechanical excavation in the form of a shielded TBM, or drill and blast excavation methods, are assessed. From the risk assessment results, and taking other important factors into account, such as project sensitivity and local experience, the recommendation is made that the relatively low risk drill-and-blast method is the most appropriate for construction of the Young Dong tunnel.

  • PDF

Numerical analysis of water flow characteristics after inrushing from the tunnel floor in process of karst tunnel excavation

  • Li, S.C.;Wu, J.;Xu, Z.H.;Li, L.P.;Huang, X.;Xue, Y.G.;Wang, Z.C.
    • Geomechanics and Engineering
    • /
    • 제10권4호
    • /
    • pp.471-526
    • /
    • 2016
  • In order to investigate water flow characteristics after inrushing in process of karst tunnel excavation, numerical simulations for five case studies of water inrush from the tunnel floor are carried out by using the FLUENT software on the background of Qiyueshan high risk karst tunnel. Firstly, the velocity-distance curves and pressure-distance curves are drawn by selecting a series of probing lines in a plane. Then, the variation characteristics of velocity and pressure are analyzed and the respective optimized escape routes are made. Finally, water flow characteristics after inrushing from the tunnel floor are discussed and summarized by comparing case studies under the conditions of different water-inrush positions and excavation situations. The results show that: (1) Tunnel constructors should first move to the tunnel side wall and then escape quickly when water inrush happens. (2) Tunnel constructors must not stay at the intersection area of the cross passage and tunnels when escaping. (3) When water inrush from floor happens in the left tunnel, if tunnel constructors meet the cross passage during escaping, they should pass through it rapidly, turn to the right tunnel and run to the entrance. (4) When water inrush from floor happens in the left tunnel, if there is not enough time to escape, tunnel constructors can run to the trolley and other equipment in the vicinity of the right tunnel working face. In addition, some rescuing equipment can be set up at the high location of the cross passage. (5) When water inrush from floor happens in the cross passage, tunnel constructors should move to the tunnel side wall quickly, turn to the tunnel without water inrush and run to the entrance. (6) When water inrush from floor happens in the cross passage, if there is not enough time to escape, tunnel constructors can run to the trolley and other equipment near by the left or the right tunnel working face. The results are of important practical significance and engineering value to ensure the safety of tunnel construction.