• Title/Summary/Keyword: Tunnel excavation

Search Result 991, Processing Time 0.024 seconds

A comparative study on the stability evaluation of double deck tunnel in terms of excavation (대심도 복층터널에 대한 굴착 안정성 평가 비교 연구)

  • Jang, Namju;Gang, Han-gil;Kim, Kihwan;Choi, Chang-rim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.155-166
    • /
    • 2019
  • It is necessary to construct underground in the metropolis. Road traffic has reached saturation point. The city has several underground road construction projects. In abroad, double deck tunnels are planned and constructed. It is attained a high level of underground development technology. In case the double deck tunnel (2 lane) is planed instead of the bidirectional tunnel (2 lane), excavation area is similar. But tunnel width is decreased. The reduced width can cut cost for the tunnel reinforcement. This study evaluates the stability of excavation on double deck tunnel. By the assessment of the strength-stress ratio and strength reduction method, quantitative analysis is conducted between double deck tunnel and the bidirectional tunnel.

A Study on the Influence of Ground Subsidence and Stability of Buildings by Tunnel Excavation in Urban Area using Numerical Analysis and Neural Network Method (수치해석 및 인공신경망 기법을 이용한 도심지 터널 굴착에 의한 침하영향 및 연도변 건물 안정성 평가)

  • Park, Sung-Ryong;Kim, Eun-Kyum;Sa, Gong-Myung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.585-594
    • /
    • 2007
  • This paper presents the methods which estimate the influence of ground subsidence and the stability of buildings by tunnel excavation in urban area. First, we study the behaviour of ground subsidence using neural network and numerical method. And we analyze the characteristic of both methods. Using the both methods, we evaluate the stability of buildings by subway tunnel excavation and we compare the results of the neural network and numerical analysis.

  • PDF

Revisions on the payline for overbreak in Tunnel

  • Park, T.;Ahn, B.;Baek, S.;Tae, Y.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.714-715
    • /
    • 2015
  • Drill and blast method has been most widely used in tunnel excavation, after NATM (New Austrian Tunneling Method) was introduced in 1983. The NATM method utilized mass of shotcrete to secure the bearing capacity of tunnels. Overbreak defined how much larger the actual excavation was than the planned. When it became larger, more shotcrete was required to fill in it Here, payline fixed allowable overbreak, referring to payable amounts of shotcrete. Since owner was not responsible for shotcrete exceeding payline, it was important to properly establish the standards for payline. Although the standards were provided in 'Poom-sam'(standardized quantity per unit), they did not properly reflect the actual conditions for excavation. Thus, this study reviewed existing domestic and foreign standards for overbreak, and estimated overbreak for each type of support using survey data, and finally provided the improvements on the current standards.

  • PDF

Analysis of displacement behavior in fractured fault and groundwater flow under tunnel excavation (터널굴착중 굴착면 단층파쇄대와 지하수 용출 구간에서 단계별 변위 거동 특성 분석)

  • Kim, Nag-Young;Park, Gun-Tae;Baek, Seung-Cheol;Lee, Kang-Hyun;Choi, Jin-Woong;Her, Yol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.71-82
    • /
    • 2017
  • It is necessary to conduct a detailed geotechnical investigation on the tunnel section in order to secure the tunnel design and construction stability. It is necessary for the importance of geotechnical investigation that needed for the analysis of distribution and size of fractured fault zone and distribution of groundwater in tunnel. However, if it is difficult to perform the ground survey in the tunnel design due to ground condition of the tunnel section and the limited conditions such as civil complaint, the tunnel design is performed using the result of the minimum survey. Therefore, if weathered fault zone exists in the face the reinforcement method is determined in the design process to secure the stability of the tunnel. The most important factor in reinforcing the tunnel excavation surface is to secure the stability of the tunnel by performing quick reinforcement. In particular, if groundwater leaching occurs on the excavation surface, more rapid reinforcement is needed. In this study, fractured fault zone exists on the tunnel excavation surface and displacement occurs due to weathered fracture zone. When the amount of groundwater leaching rapidly increased under the condition of displacement, the behavior of tunnel displacement was analyzed based on tunnel collapse. In the study, reinforcement measures were taken because the first stage displacement did not converge continuously. After the first reinforcement, the displacement was not converged due to increased groundwater leaching and the second stage displacement occurred and chimney collapse occurred.

A numerical study on the behavior of existing and enlarged tunnels when widened by applying the pre-cutting method (Pre-cutting 공법을 적용한 터널 확폭 시 기존 및 확폭터널의 거동에 관한 수치해석적 연구)

  • Kim, Han-Eol;Nam, Kyoung-Min;Ha, Sang-Gui;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.451-468
    • /
    • 2020
  • Aging tunnels with small cross-sections can cause chronic traffic jams. This problem can be solved by widening the tunnel. In general, when the tunnel is expanded, the outer portion of the existing tunnel is excavated through a mechanical or blasting method. Such excavation affects not only the surrounding ground but also the existing tunnel. The application of the pre-cutting method can be a solution to these problems effectively. Therefore, if the widening of tunnel is performed by applying pre-cutting method, analysis of the impact of this method must be performed. In this study, in order to analyze the effect of applying pre-cutting in tunnel widening, numerical analysis is performed at six ground grades, from grade I to weathered rock. The analysis is performed with the expanding lane and the excavation length of pre-cutting as variables. In addition, the analysis is focused on the displacement of crown of the existing tunnel and the enlarged tunnel. As a result, the crown displacement of the enlarged tunnel is confirmed to converge at the same value regardless of the excavation length of the pre-cutting when the tunnel widening is completed. In the case of existing tunnels, uplift of crown occurs within 5 m of the front of the tunnel surface, and the shorter the excavation length of pre-cutting is found to be effective in preventing the occurrence of uplift.

Rationalization of Gripper TBM Supporting System Pass through Serviced Subway Line (기존 운행선 직하부 통과 굴착에 따른 Gripper TBM 지보패턴 합리화 방안)

  • Hak-Young So;Kook Hwan Cho
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.413-420
    • /
    • 2024
  • When planning gripper TBM, which is highly applicable to urban areas, the excavation characteristics are not considered. In addition the excavation stability and constructability are degraded by installing reinforcements in the adjacent construction site considering the relaxation load theory of the pre-existing NATM. In this study, a rationalization plan for the support was proposed considering the excavation characteristics of gripper TBM when planning reinforcements for adjacent pre-existing construction. The effect of excavation on the surrounding ground was analyzed by conducting three-dimensional stability analyses considering the construction stage for each excavation phase. In NATM, relaxation phenomenon is concentrated in tunnel face due to non-supporting time occurring simultaneously with excavation, but gripper TBM supports the ground around the tunnel face through the cutter head and skin plate, simultaneously causing ground relaxation behind the skin plate. Considering these excavation characteristics, problems in reinforcement planning for adjacent construction at the study site were pointed out. A performance improvement plan for a reasonable supporting system was proposed.

The design of outlet in inter-cross slope with tunnel which it applied forming artificial ground (인공지반을 적용한 사교하는 사면에서의 터널 갱구부 설계)

  • Park, Chal-Sook;Kwan, Han;Lee, Kyu-Tak;Kim, Bong-Jae;Yun, Yong-Jin;Kim, Kwang-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1532-1548
    • /
    • 2008
  • The tunnel type spillways is under construction to increasing water reservoir capacity in Dae-am dam. The tunnel outlet was planned to be made after installing slope stabilization system on natural slope there. Generally, the tunnel outlet is made perpendicularly to the slope, but in this case, it had to be made obliquely to the slope for not interrupting flow of river. Because of excavation in condition of natural slope caused to deflecting earth pressure, the outlet couldn't be made. So, artificial ground made with concrete that it was constructed in the outside of tunnel for producing the arching effect which enables to make a outlet. We were planned tunnel excavation was carried out after artificial ground made. Artificial ground made by poor mix concrete of which it was planned that the thickness was at least 3.0m height from outside of tunnel lining and 30cm of height per pouring. Spreading and compaction was planned utilized weight of 15 ton roller machine. In order to access of working truck, slope of artificial ground was designed 1:1.0 and applied 2% slope in upper pert of it for easily drainage of water. In addition to, upper pert of artificial ground was covered with soil, because of impaction of rock fall from upper slope was made minimum. The tunnel excavation of the artificial ground was designed application with special blasting method that it was Super Wedge and control blasting utilized with pre-percussion hole.

  • PDF

Evaluation of Groundwater Level Decline and Water Quality Due to Tunnel Excavation (터널굴착으로 인한 지하수위 저하 및 수질영향 평가)

  • Kim, Min Gyu;Kim, Minsoo;Jeong, Gyocheol;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.113-122
    • /
    • 2019
  • In this study, the flow analysis to evaluate the extent of groundwater decline and the effect of the small valleys caused by the decrease of groundwater level in the construction of road tunnel, and the pollutant movement analysis to evaluate pollution of nearby water source by pollutant discharge during tunnel construction, respectively. The decrease of the groundwater during the 30 month tunnel excavation period was maximum 27 m and it was found to be the largest within 50 m from the tunnel center. The flow of groundwater is shown in the form of flowing into the tunnels and the effects of groundwater level decline were observed up to a tunnel radius of 200 m. As a result of the numerical modeling of the contaminant transport to examine the influence of the polluted water discharge from the tunnel, the range of the turbid water generated at the end of the tunnel is up to 120 m and it is estimated that the risk of contamination of the small river is not large.

The Characteristics of Long-term Deformation Behavior During Tunnel Excavation in the Pyroclastic Rock (화산쇄설암 구간에서 터널 공사 중 장기변형거동 특성 연구)

  • Jang, Sukmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.23-28
    • /
    • 2022
  • In Korea, 70% of the land is mountainous and structures occupy a high proportion in railway and road construction. In particular, in recent years, the construction of high-speed railways and highways for high-speed driving is rapidly increasing. At the same time, the construction of tunnels is also increasing. The number of tunnel construction cases in which long-term deformation occurs after tunnel excavation is completed is increasing. The stability of these tunnel structures depends entirely on the characteristics of the rock surrounding the tunnel excavation. In the case of pyroclastic rock, which is the subject of this study, it is generally vulnerable to weathering and has a characteristic that its strength decreases over a long period of time. Tunnel design and construction planning considering the strength characteristics of pyroclastic rocks are essential. This study analyzed the cases of over-deformation that occurred at the tunnel site in the pyroclastic section. Based on this study, a plan for tunnel design and construction management in an area where pyroclastic rock exist in the future is presented.

Prediction of transverse settlement trough considering the combined effects of excavation and groundwater depression

  • Kim, Jonguk;Kim, Jungjoo;Lee, Jaekook;Yoo, Hankyu
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.851-859
    • /
    • 2018
  • There are two primary causes of the ground movement due to tunnelling in urban areas; firstly the lost ground and secondly the groundwater depression during construction. The groundwater depression was usually not considered as a cause of settlement in previous research works. The main purpose of this study is to analyze the combined effect of these two phenomena on the transverse settlement trough. Centrifuge model tests and numerical analysis were primarily selected as the methodology. The characteristics of settlement trough were analyzed by performing centrifuge model tests where acceleration reached up to 80g condition. Two different types of tunnel models of 180 mm diameter were prepared in order to match the prototype of a large tunnel of 14.4 m diameter. A volume loss model was made to simulate the excavation procedure at different volume loss and a drainage tunnel model was made to simulate the reduction in pore pressure distribution. Numerical analysis was performed using FLAC 2D program in order to analyze the effects of various groundwater depression values on the settlement trough. Unconfined fluid flow condition was selected to develop the phreatic surface and groundwater level on the surface. The settlement troughs obtained in the results were investigated according to the combined effect of excavation and groundwater depression. Subsequently, a new curve is suggested to consider elastic settlement in the modified Gaussian curve. The results show that the effects of groundwater depression are considerable as the settlement trough gets deeper and wider compared to the trough obtained only due to excavation. The relationships of maximum settlement and infection point with the reduced pore pressure at tunnel centerline are also suggested.