• 제목/요약/키워드: Tunnel effect

Search Result 1,714, Processing Time 0.026 seconds

Effect of new tunnel construction on structural performance of existing tunnel lining

  • Yoo, Chungsik;Cui, Shuaishuai
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents the results of a three-dimensional numerical investigation into the effect of new tunnel construction on structural performance of existing tunnel lining. A three-dimensional finite difference model, capable of modelling the tunnel construction process, was adopted to perform a parametric study on the spatial variation of new tunnel location with respect to the existing tunnel with emphasis on the plan crossing angle of the new tunnel with respect to the existing tunnel and the vertical elevation of the new tunnel with respect to the existing one. The results of the analyses were arranged so that the effect of new tunnel construction on the lining member forces and stresses of the existing tunnel can be identified. The results indicate that when a new tunnel underpasses an existing tunnel, the new tunnel construction imposes greater impact on the existing tunnel lining when the two tunnels cross at an acute angle. Also shown are that the critical plan crossing angle of the new tunnel that would impose greater impact on the existing tunnel depends on the relative vertical location of the new tunnel with respect to the existing one, and that the overpassing new tunnel construction scenario is more critical than the underpassing scenario in view of the existing tunnel lining stability. Practical implications of the findings are discussed.

Effect of Tunnel Advance Rate on the Seepage Forces Acting on the Tunnel Face (터널굴진율이 막장에서의 침투력에 미치는 영향에 관한 연구)

  • 남석우;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.327-333
    • /
    • 2002
  • In this study, the effect of tunnel advance rate on the seepage forces acting on the tunnel face was studied. The finite element program to analyze the groundwater flow around a tunnel with the consideration of tunnel advance rate was developed. Using the program, the parametric study for the effect of the tunnel advance rate and hydraulic characteristics of the ground on the seepage forces acting on the tunnel face was studied. From this study, it was concluded that the tunnel advance rate must be taken into consideration as an additional parameter to assess the seepage forces at the tunnel face and a rational design methodology for the assessment of support pressures required for maintaining the stability of the tunnel face was suggested for underwater tunnels.

  • PDF

A Study for Influence of Sun Glare Effect on Traffic Safety at Tunnel Hood (직광에 의한 눈부심 현상이 터널 출구부 안전성에 미치는 영향 연구)

  • Kim, Youngrok;Kim, Sangyoup;Choi, Jaisung;Lee, Daesung
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.103-110
    • /
    • 2012
  • PURPOSES : In Korea, over 70 percent of the land consists of mountainous and rolling area. Thus, tunnels continue its upward trend as road network are extended. In these circumstances, the importance of tunnel has been increased nowadays and then its safety investigation and research should be performed. This study is focus on confirming and improving the safety of tunnel. On tunnel hood, sunglare effect can irritate driver's behavior instantly and this can result in incident. METHODS : The study of this phenomenon is rarely conducted in domestic and foreign papers, so there is no proper measure for this. This study analyzes the driving environment of the effect of sunglare effect on tunnel hood. RESULTS : Traffic accidents stem from complex set of factors. This study build the Traffic Accident Prediction Models to find out the effect of sunglare effect on tunnel's hood. The independent variables are traffic volume, geometric design of road, length of tunnel and road side environment. Using these variables, this model estimates accident frequency on tunnel hood by Poisson regression model and Negative binomial regression model. Although Poisson regression model have more proper goodness of fit than Negative binomial regression model, Poisson regression model has overdipersion problem. So the Negative binomial regression model is used in this analysis. CONCLUSIONS : Consequently, the model shows that sunglare effect can play a role in driving safety on tunnel hood. As a result, the information of sunglare effect should be noticed ahead of tunnel hood so this can prevent drivers from being in hazard situation.

Effect of construction sequence on three-arch tunnel behavior-Numerical investigation

  • Yoo, C.;Choi, J.
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.911-917
    • /
    • 2018
  • This paper concerns a numerical investigation on the effect of construction sequence on three-arch (3-Arch) tunnel behavior. A three-arch tunnel section adopted in a railway tunnel construction site was considered in this study. A calibrated 3D finite element model was used to conduct a parametric study on a variety of construction scenarios. The results of analyses were examined in terms of tunnel and ground surface settlements, shotcrete lining stresses, loads and stresses developed in center column in relation to the tunnel construction sequence. In particular, the effect of the side tunnel construction sequence on the structural performance of the center structure was fully examined. The results indicated that the load, thus stress, in the center structure can be smaller when excavating two side tunnels from opposite direction than excavating in the same direction. Also revealed was that no face lagging distance between the two side tunnels impose less ground load to the center structure. Fundamental governing mechanism of three-arch tunnel behavior is also discussed based on the results.

NUMERICAL ANALYSIS OF TUNNEL FLOW INDUCED BY JET FAN (제트팬 운전에 의해 형성되는 터널내 유동에 대한 수치적 해석)

  • Kim, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.10-13
    • /
    • 2010
  • The flow field in road tunnel is influenced by some facts such as piston effect of vehicle's move, operation of ventilation facilities, natural wind and buoyancy effect of fire plume. Among those, jet fan is one of main ventilation facilities especially in longitudinal ventilation system of tunnel. In this study to analyze tunnel flow induced by operation of jet fan, numerical simulation has been carried out. The velocity distributions and streamlines in tunnel are examined to consider the three-dimensional characteristics of tunnel flow caused by jet fan.

  • PDF

Soil-Tunnel Interaction and Isolation Effect during Earthquakes (지진시 지반-터널 상호작용 및 면진 효과)

  • 김대상
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.120-127
    • /
    • 2001
  • Long term earthquake observations at different tunnel sites within a variety of alluvial soil deposits have demonstrated that a circular tunnel is liable to deform in such a way that its two diagonal diameters crossing each other expand and contract alternately. Based on this knowledge, the soil-tunnel interaction and isolation effect for this particular vibration mode is investigated. Interaction effect is considered with the condition of fixed tangential strain between the tunnel and the soil. Isolation effect embodied by covering up the tunnel with isolation materials is discussed as a possible measure for mitigating seismic damage to it. When Poisson`s ratio of isolation material decreases or the shear modulus ratios of the soil to isolation material become large, the isolation effect becomes bigger.

  • PDF

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel

  • Lee, Jin-Tae;Kim, Young-Gi
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.41-56
    • /
    • 1995
  • Flew control devices, such as flow liners, are frequently introduced in a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section off cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the afterbody of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary taper calculation should be incorporated in order to correlate the calculated wake distribution with the measured one.

  • PDF

A Field Application of Crosshole Seismic Survey to the Detection of Tunnel (터널위치 규명을 위한 시추공 탄성파탐사 현장 응용)

  • 김중열;김유성
    • The Journal of Engineering Geology
    • /
    • v.7 no.1
    • /
    • pp.27-36
    • /
    • 1997
  • This paper shows that crosshole seismic survey allows to detect even a small size of underground tunnel (about 2m$\times$2m). Such a small tunnel (e.g. infiltration tunnel) causes diffraction, as the seismic wave propagates, which results in distinctive variations of traveltime and amplitude of the first arrivals. This effect (or tunnel effect) is a typical indicator for the existence of tunnel and thereby an information about the tunnel location can be obtained. It was shown that the tunnel effect illustrated by numerical modeling (FDM) could be also observed in field measurements. The depth and shape of the tunnel were determined by a simplified processing method based on the use of amplitude variation of the first arrivals. The estimated location of the tunnel was well matched to that of the real tunnel.

  • PDF

Wind tunnel effect analysis for MEXICO wind turbine model (MEXNEXT 풍력발전기 풍동 시험에 대한 풍동 영향 분석)

  • Shin, Hyungki;Lim, Jongsoo;Jang, Moonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.59.1-59.1
    • /
    • 2011
  • In this research, CFD calculation was implemented to analyze wind tunnel effect or rotor experiment in wind tunnel. One case included model wind turbine and all wind tunnel geometries. The other case include only rotor and nacelle system. Star-CCM+ was used for CFD analysis and rigid body motion around rotor area was applied to simulate rotating rotor. As for turbulence model, K-omega SST was used. The results were compared in 15m/s inflow condition. These results shows a good agreement with the measurement. Then, the result without wind tunnel was slightly different to the result with wind tunnel. Thus, in the case of Mexnex wind tunnel measurement, the wind tunnel don't affect the measurement result. Then, this wind tunnel and rotor size ratio can be reference for wind tunnel experiment of wind turbine rotor.

  • PDF

Effects of Tunnel Construction on an Existing Tunnel Lining (터널 근접시공이 기존터널 라이닝에 미치는 영향에 관한 연구)

  • Yoo, Chung-Sik;Song, Ah-Ran
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.307-324
    • /
    • 2006
  • Effects of new tunnel construction on an existing tunnel are investigated in this paper. A parametric study was conducted on a number of conditions in terms of relative location of the new tunnel to the existing tunnel using 2D and 3D finite element models. The results indicated that the new tunnel construction imposes most severe effect on the existing tunnel's lining when located below the existing tunnel's springline for cases in which the new tunnel is constructed parallel to the existing tunnel. It is also revealed that the effect to the new tunnel construction is larger when the new tunnel is constructed under the existing tunnel than above for cases in which the new tunnel is crossed with the existing tunnel. Practical implications of the finding are discussed.