• Title/Summary/Keyword: Tunnel displacement

Search Result 539, Processing Time 0.029 seconds

Numerical study on structural reinforced effects of concrete lining by spray-applied waterproofing membrane (차수용 박층 멤브레인 설치에 따른 콘크리트 라이닝의 구조적 보강효과에 관한 수치해석 연구)

  • Lee, Chulho;Lee, Kicheol;Kim, Dongwook;Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.551-565
    • /
    • 2017
  • A spray-applied waterproofing membrane which consists of polymers has a relatively higher constructability and adhesion than the conventional sheet-type waterproofing materials. Additionally, the spray-applied waterproofing membrane generally shows a waterproofing ability as a composite structure with shotcrete or concrete lining. Because its purpose is waterproofing at the structure, structural effects were not well reported than waterproofing abilities. In this study, structural effects of the membrane-attached concrete lining were evaluated using 3-point bending test by the numerical method. From the analysis, a load-displacement behavior of the concrete lining and fracturing energy after yielding were compared with various conditions. Consequently, concrete lining with spray-applied waterproofing membrane shows higher flexural strength and fracturing energy than the single-layer concrete lining.

Dynamic Frictional Behavior of Artificial Rough Rock Joints under Dynamic Loading (진동하중 하에서 거친 암석 절리면의 동력 마찰거동)

  • Jeon Seok-Won;Park Byung-Ki
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.166-178
    • /
    • 2006
  • Recently, the frequency of occurring dynamic events such as earthquakes, explosives blasting and other types of vibration has been increasing. Besides, the chances of exposure for rock discontinuities to free faces get higher as the scale of rock mass structures become larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, artificially fractured rock joint specimens were prepared in order to examine the dynamic frictional behavior of rough rock joint. Roughness of each specimen was characterized by measuring surface topography using a laser profilometer and a series of shaking table tests was carried out. For mated joints, the static friction angle back-calculated ken the yield acceleration was $2.7^{\circ}$ lower than the tilt angle on average. The averaged dynamic friction angle for unmated joints was $1.8^{\circ}$ lower than the tilt angle. Displacement patterns of sliding block were classified into 4 types and proved to be related to the first order asperity of rock joint. The tilt angle and the static friction angle for mated joints seem to be correlated to micro average inclination angle which represents the second order asperity. The tilt angle and the dynamic friction angle for unmated Joints, however, have no correlation with roughness parameters. Friction angles obtained by shaking table test were lower than those by direct shear test.

Fracture Toughness Evaluation and Influence Parameter Analysis by Numerical Simulation of Brazilian Test (Brazilian 시험의 수치해석 시뮬레이션을 통한 파괴인성 산정 및 영향변수 분석)

  • Synn, Joong-Ho;Park, Chan;Shin, Hee-Soon;Chung, Yong-Bok;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.320-328
    • /
    • 2000
  • The numerical simulation of Brazilian fracture toughness test is carried out using PFC code and the influence parameters are analyzed such as shape of loading plane, size of Brazilian disc and unit particle of model, loading angle and loading rate. The flattened Brazilian disc is adopted for applying uniform load. The range of loading angle(2$\alpha$) necessary to induce the tensile crack at disc center and to obtain the load-displacement curve giving the critical load for the stable crack propagation is shown as 20°∼40°. In condition that the loading angle is 20°, the mode-I fracture toughness is evaluated almost constant in the range of particle size less than 1 mm and loading rate less than 0.01㎜/s. This range of influence parameters seems appropriate condition for the tensile crack initiation at disc center and the control of stable crack propagation, which can give the reliance in evaluation of fracture toughness by Brazilian test.

  • PDF

A Case Study on Elephant Foot Method for Railway Tunneling in Large Fault Zone (대규모 단층대구간에서의 철도터널 우각부 보강공법 적용성 연구)

  • Lee, Gilyong;Oh, Jeongho;Cho, Kyehwan;Lee, Doosoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1161-1167
    • /
    • 2016
  • In this study, an attempt was made to conduct a case study on the development of ground expansive displacement due to lack of bearing capacity of original ground in spite of applying reinforcement treatments that intended to enhance the stability of big size high-speed rail tunnel in large fault zone. For the purpose of this, in-situ measurements made in the middle of excavation stage were analyzed in order to characterize ground responses and numerical analysis was performed to evaluate the effectiveness of reinforcement technique such as elephant foot method applied for this site via comparing with field monitoring measurements. In addition, further numerical studies were carried out to investigate the influence of leg pile installation angle and length, which is one of types of elephant foot method. The results revealed that the optimum condition for the leg pile installation is to maintain 45 degree of installation angle along with 6 meter of embedment depth.

Revision Anterior Cruciate Ligament Surgery Using Hamstring Autograft (슬괵건을 이용한 전방 십자 인대 재 재건술)

  • In Yong;Bahk Won-Jong;Kwon Oh-Soo;Suh Young-Wan;Im Dong-Sun
    • Journal of the Korean Arthroscopy Society
    • /
    • v.7 no.2
    • /
    • pp.183-188
    • /
    • 2003
  • Purpose : The purpose of this study is to evaluate the results of revision surgery for failed anterior cruciate ligament (ACL) reconstruction using quadruple hamstring tendon autograft. Materials and Methods : From May 2000 to July 2002, six patients received ACL revision surgery using quadruple hamstring autograft for failed ACL reconstruction. Femoral tunnels were made 40 mm in depth and fixed with a cross pin and a bioabsorbable interference screw to fill the bone defect. In tibial tunnels, the grafts were fixed with Intrafix(Mitek, Norwood, MA). In case of tibial tunnel widening, additional screw-washer fixation was done. Follow up was at least 12 months postoperatively. Clinical assessments consisted of Lysholm knee scores, International Knee Documentation Committee(IKDC) evaluation form and manual maximal side to side difference using KT-2000 arthrometer. Results : The average Lysholm knee score improved from 77.2 preoperatively to 87.7 postoperatively. At the final IKDC evaluation, 1 case was graded as normal, 4 nearly normal, 1 abnormal. Mean side to side difference of manual maximum anterior displacement using the KT-2000 arthrometer was 1.8mm. The success rate was $83\%$. Conclusion : ACL revision surgery using quadruple hamstring autograft with double fixation is considered good procedure with successful results.

  • PDF

Effects of Hydrological Condition on the Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반 공동 열에너지저장소 주변 암반의 수리적 조건에 따른 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Lee, Hang Bok;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.168-185
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a large-scale high-temperature cavern thermal energy storage (CTES) at a shallow depth has been investigated, and the effects of hydrological conditions such as water table and rock permeability on the behavior have been examined. The liquid saturation of ground water around a storage cavern may have a small impact on the overall heat transfer and mechanical behavior of surrounding rock mass for a relatively low rock permeability of $10^{-17}m^2$. In terms of the distributions of temperature, stress and displacement of the surrounding rock mass, the results expected from the simulation with the cavern below the water table were almost identical to that obtained from the simulation with the cavern in the unsaturated zone. The heat transfer in the rock mass with reasonable permeability ${\leq}10^{-15}m^2$ was dominated by the conduction. In the simulation with rock permeability of $10^{-12}m^2$, however, the convective heat transfer by ground-water was dominant, accompanying the upward heat flow to near-ground surface. The temperature and pressure around a storage cavern showed different distributions according to the rock permeability, as a result of the complex coupled processes such as the heat transfer by multi-phase flow and the evaporation of ground-water.

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

Case study of landslide types in Korea (우리나라 산사태의 형태분류에 따른 사례)

  • 김원영;김경수;채병곤;조용찬
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.18-35
    • /
    • 2000
  • The most dominant type of landslide in Korea is debris flows which mostly take place along mountain slopes during the rainy season, July to August. The landslides have been reported to begin activation when rainfall is more than 200mm within 2days. The debris flows are usually followed by translational slips which occur upper part of mountain slopes and they transit to debris flow as getting down to the valleys. Lithology, location, slope inclination, grain size distribution of soil, permeability, dry density and porosity have been proved as triggering factor causing translational slides. The triggering data taken from mapping are statistically analysed to get landslide potential quantitatively. Rock mass creeps mostly occur on well bedded sedimentary rocks in Kyeongsang Basin. Although the displacement of rock mass creep is relatively small about 1m, the creep can cause severe hazards due to relatively large volume of the involved rock mass. Examples are rock mass creep occurred in the mouth of Hwangryongsan Tunnel, in Chilgok and in Sachon in 1999. Although the direct factor of the creeps are due to slope cutting at the foot area, more attention is required A rotational slide occurring within thick soil formation or weathered rock is also closely related to bottom part of slope cutting. It is propagated circular or semi-circular type. Especially in korea, the rotational slide may be frequently occurred in Tertiary tuff area. Because they are mainly composed of volcanic ash and pyroclastic materials, well developed joints and high degree of swelling and absorption can easily cause the slide. The landslide among the Pohang-Guryongpo national road is belong to this type of slide.

  • PDF

Parameter Study of Track Deformation Analysis by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 지하철 궤도 변형 해석을 위한 매개변수 연구)

  • Choi, Jung-Youl;Cho, Soo-Il;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.669-675
    • /
    • 2020
  • In this study, 3D analysis was compared in evaluating the track deformation of subway structures during adjacent excavation. For the 3D analysis model, the boundary conditions of the tunnel model and the application level of the ground water were analyzed as variables. As the result of the effects of track irregularity using the 3D model, the analysis model considering the site ground water level instead of the design values and changing the constraint of the boundary condition is more reasonable. In addition, the influence of track irregularity due to the boundary condition and load condition of the analytical model is more obvious in the factors directly affected by the longitudinal relative displacement of the rail, such as alignment, cross level and gauge irregularity. Therefore, the evaluation on track stability according to adjacent excavation work was appropriate to analysed the longitudinal deformation of the track by using 3D model that could be investigate the deformation of rail. In addition, the boundary condition and load condition(ground water level) of the numerical model was important for accurate analysis results.

Initial Fixation Power of Human Bone Interference Screw (인간 골 간섭 나사못의 초기 고정력)

  • Kim Jung-Man;Chung Yang-Kook;Kim Yang-Soo;Oh In-Soo;Koh Ihn-Joon
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.1 no.1
    • /
    • pp.26-30
    • /
    • 2002
  • Purpose: To estimate the initial and early phase fixation power of the human bone interference screw in reconstruction of the anterior cruciate ligament with bone-patellar tendon-bone allograft. Materials and Methods: The results of twenty eight knees of reconstruction with bone-patellar tendon-bone allograft were analysed in 6 weeks, 12 weeks, 6 months and one year following operation. Physical examination including Lachman test, flexion rotation drawer test and jerk test were performed. The KT-1000 measurement was performed at the same time. In Lachman test 0 $\~$2mm anterior displacement of the tibia was considered normal. The KT-1000 measurement of normal side was compared with operation side and the difference of the two was recorded. The MRI was checked at final follow-up. Results: All but one knee showed normal in physical examination. The failed case showed proximal migration of the graft due to insufficient number of interference screw fixation in widened tibial tunnel. Conclusions: The human cortical bone interference screw showed sufficient initial and early phase fixation power in reconstruction of the anterior cruciate ligament.

  • PDF