• Title/Summary/Keyword: Tunnel Incident Automatic Detection

Search Result 7, Processing Time 0.018 seconds

An In-Tunnel Traffic Accident Detection Algorithm using CCTV Image Processing (CCTV 영상처리를 이용한 터널 내 사고감지 알고리즘)

  • Baek, JungHee;Min, Joonyoung;Namkoong, Seong;Yoon, SeokHwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-90
    • /
    • 2015
  • Almost of current Automatic Incident Detection(AID) algorithms involve the vulnerability that detects the traffic accident in open road or in tunnel as the traffic jam not as the traffic accident. This paper proposes the improved accident detection algorithm to enhance the detection probability based on accident detection algorithms applied in open roads. The improved accident detection algorithm provides the preliminary judgment of potential accident by detecting the stopped object by Gaussian Mixture Model. Afterwards, it measures the detection area is divided into blocks so that the occupancy rate can be determined for each block. All experimental results of applying the new algorithm on a real incident was detected image without error.

Development of Real-time fire and Smoke Algorithms Using Surveillance Camera in Tunnel Environment (터널 내 감시 카메라 영상을 이용한 실시간 화염 및 연기 탐지 기법의 개발)

  • Lee, Byoung-Moo;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.219-220
    • /
    • 2007
  • In this paper, we proposed image processing technique for automatic real time fire and smoke detection in tunnel environment. To avoid the large scale of damage of fire occurred in the tunnel, it is necessary to have a system to minimize and to discover the incident as fast as possible. The fire and smoke detection is different from the forest fire detection as there are elements such as car and tunnel lights and others that are different from the forest environment so that an indigenous algorithm has to be developed. The two algorithms proposed in this paper, are able to detect the exact position, at the earlier stage of incident.

  • PDF

Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels (딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발)

  • Lee, Kyu Beom;Shin, Hyu Soung;Kim, Dong Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1161-1175
    • /
    • 2018
  • An unexpected event could be easily followed by a large secondary accident due to the limitation in sight of drivers in road tunnels. Therefore, a series of automated incident detection systems have been under operation, which, however, appear in very low detection rates due to very low image qualities on CCTVs in tunnels. In order to overcome that limit, deep learning based tunnel incident detection system was developed, which already showed high detection rates in November of 2017. However, since the object detection process could deal with only still images, moving direction and speed of moving vehicles could not be identified. Furthermore it was hard to detect stopping and reverse the status of moving vehicles. Therefore, apart from the object detection, an object tracking method has been introduced and combined with the detection algorithm to track the moving vehicles. Also, stopping-reverse discrimination algorithm was proposed, thereby implementing into the combined incident detection processes. Each performance on detection of stopping, reverse driving and fire incident state were evaluated with showing 100% detection rate. But the detection for 'person' object appears relatively low success rate to 78.5%. Nevertheless, it is believed that the enlarged richness of image big-data could dramatically enhance the detection capacity of the automatic incident detection system.

Development of a deep-learning based tunnel incident detection system on CCTVs (딥러닝 기반 터널 영상유고감지 시스템 개발 연구)

  • Shin, Hyu-Soung;Lee, Kyu-Beom;Yim, Min-Jin;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.915-936
    • /
    • 2017
  • In this study, current status of Korean hazard mitigation guideline for tunnel operation is summarized. It shows that requirement for CCTV installation has been gradually stricted and needs for tunnel incident detection system in conjunction with the CCTV in tunnels have been highly increased. Despite of this, it is noticed that mathematical algorithm based incident detection system, which are commonly applied in current tunnel operation, show very low detectable rates by less than 50%. The putative major reasons seem to be (1) very weak intensity of illumination (2) dust in tunnel (3) low installation height of CCTV to about 3.5 m, etc. Therefore, an attempt in this study is made to develop an deep-learning based tunnel incident detection system, which is relatively insensitive to very poor visibility conditions. Its theoretical background is given and validating investigation are undertaken focused on the moving vehicles and person out of vehicle in tunnel, which are the official major objects to be detected. Two scenarios are set up: (1) training and prediction in the same tunnel (2) training in a tunnel and prediction in the other tunnel. From the both cases, targeted object detection in prediction mode are achieved to detectable rate to higher than 80% in case of similar time period between training and prediction but it shows a bit low detectable rate to 40% when the prediction times are far from the training time without further training taking place. However, it is believed that the AI based system would be enhanced in its predictability automatically as further training are followed with accumulated CCTV BigData without any revision or calibration of the incident detection system.

Flame and Smoke Detection Method for Early and Real-Time Detection of Tunnel Fire (터널 화재의 실시간 조기 탐지를 위한 화염 및 연기 검출 기법)

  • Lee, Byoung-Moo;Han, Dong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.59-70
    • /
    • 2008
  • In this paper, we proposed image processing technique for automatic real-time fire and smoke detection in tunnel environment. To avoid the large scale of damage of fire occurred in variety environments, it is purposeful to propose many studies to minimize and to discover the incident as fast as possible. But we need new specific algorithm because tunnel environment is quite different and it is difficult to apply previous fire detection algorithm to tunnel environment. Therefore, in this paper, we proposed specific algorithm which can be applied in tunnel environment. To minimize false detection in tunnel we used color and motion information. And it is possible to detect exact position in early stage with detection, test, verification procedures. In addition, by comparing properties of each algorithm throughout experiment, we have proved the validity and efficiency of proposed algorithm.

A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm (기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Yim, Min-Jin;Lee, Kyu-Beom;Oh, Young-Sup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.95-107
    • /
    • 2017
  • In this study, a preliminary study was undertaken for development of a tunnel incident automatic detection system based on a machine learning algorithm which is to detect a number of incidents taking place in tunnel in real time and also to be able to identify the type of incident. Two road sites where CCTVs are operating have been selected and a part of CCTV images are treated to produce sets of training data. The data sets are composed of position and time information of moving objects on CCTV screen which are extracted by initially detecting and tracking of incoming objects into CCTV screen by using a conventional image processing technique available in this study. And the data sets are matched with 6 categories of events such as lane change, stoping, etc which are also involved in the training data sets. The training data are learnt by a resilience neural network where two hidden layers are applied and 9 architectural models are set up for parametric studies, from which the architectural model, 300(first hidden layer)-150(second hidden layer) is found to be optimum in highest accuracy with respect to training data as well as testing data not used for training. From this study, it was shown that the highly variable and complex traffic and incident features could be well identified without any definition of feature regulation by using a concept of machine learning. In addition, detection capability and accuracy of the machine learning based system will be automatically enhanced as much as big data of CCTV images in tunnel becomes rich.

Preliminary study on car detection and tracking method using surveillance camera in tunnel environment for accident detection (터널 내 유고상황 자동 판정을 위한 선행 연구: CCTV를 이용한 차량의 탐지와 추적 기법 고찰)

  • Oh, Young-Sup;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.813-827
    • /
    • 2017
  • Surveillance cameras installed in tunnels capture the various video frames effected by dynamic and variable factors. In addition, localizing and managing the cameras in tunnel is not affordable, and quality of capturing frame is effected by time. In this paper, we introduce a new method to detect and track the vehicles in tunnel by using surveillance cameras installed in a tunnel. It is difficult to detect the video frames directly from surveillance cameras due to the motion blur effect and blurring effect on lens by dirt. In order to overcome this difficulties, two new methods such as Differential Frame/Non-Maxima Suppression (DFNMS) and Haar Cascade Detector to track cars are proposed and investigated for their feasibilities. In the study, it was shown that high precision and recall values could be achieved by the two methods, which then be capable of providing practical data and key information to an automatic accident detection system in tunnels.