• Title/Summary/Keyword: Tunnel Environment

Search Result 669, Processing Time 0.028 seconds

Study on failure behaviors of mixed-mode cracks under static and dynamic loads

  • Zhou, Lei;Chen, Jianxing;Zhou, Changlin;Zhu, Zheming;Dong, Yuqing;Wang, Hanbing
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.567-582
    • /
    • 2022
  • In the present study, a series of physical experiments and numerical simulations were conducted to investigate the effects of mode I and mixed-mode I/II cracks on the fracture modes and stability of roadway tunnel models. The experiments and simulations incorporated different inclination angle flaws under both static and dynamic loads. The quasi-static and dynamic testing were conducted by using an electro-hydraulic servo control device and drop weight impact system (DWIS), and the failure process was simulated by using rock failure process analysis (RFPA) and AUTODYN software. The stress intensity factor was also calculated to evaluate the stability of the flawed roadway tunnel models by using ABAQUS software. According to comparisons between the test and numerical results, it is observed that for flawed roadways with a single radical crack and inclination angle of 45°, the static and dynamic stability are the lowest relative to other angles of fractured rock masses. For mixed-mode I/II cracks in flawed roadway tunnel models under dynamic loading, a wing crack is produced and the pre-existing cracks increase the stress concentration factor in the right part of the specimen, but this factor will not be larger than the maximum principal stress region in the roadway tunnel models. Additionally, damage to the sidewalls will be involved in the flawed roadway tunnel models under static loads.

Reliability of numerical computation of pedestrian-level wind environment around a row of tall buildings

  • Lam, K.M.;To, A.P.
    • Wind and Structures
    • /
    • v.9 no.6
    • /
    • pp.473-492
    • /
    • 2006
  • This paper presents numerical results of pedestrian-level wind environment around the base of a row of tall buildings by CFD. Four configurations of building arrangement are computed including a single square tall building. Computed results of pedestrian-level wind flow patterns and wind speeds are compared to previous wind tunnel measurement data to enable an assessment of CFD predictions. The CFD model uses the finite-volume method with RNG $k-{\varepsilon}$ model for turbulence closure. It is found that the numerical results can reproduce key features of pedestrian-level wind environment such as corner streams around corners of upwind building, sheltered zones behind buildings and channeled high-speed flow through a building gap. However, there are some differences between CFD results and wind tunnel data in the wind speed distribution and locations of highest wind speeds inside the corner streams. In locations of high ground-level wind speeds, CFD values match wind tunnel data within ${\pm}10%$.

Characteristics of Hazardous Air Pollutant Level in Road Tunnels in Seoul (서울시 터널의 유해대기오염물질 농도변화 특성 분석)

  • Park, Jin-A;Lee, Won-Young;Kim, Jin-A;Kim, Ik-Su;Kim, Hyun-Su;Jeong, Jong-Heup;Yun, Jung-Seop;Jung, Kweon;Eom, Seog-Won
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.6
    • /
    • pp.541-549
    • /
    • 2013
  • Objectives: We analyzed the characteristics of hazardous air pollutants (HAPs) in road tunnels in Seoul. Methods: Particle matter ($PM_{10}$), elemental carbon (EC), organic carbon (OC), and 16 species of polycyclic aromatic hydrocarbons (PAHs) in two road tunnels (NS tunnel and HJ tunnel) were sampled and analyzed from 2007 to 2011. Results: Levels of $PM_{10}$ and carbon ingredients which were mainly emitted from diesel-fueled vehicles showed a declining tendency in both road tunnels. PAHs levels in HJ were declining slightly while PAHs levels in the NS tunnel fluctuated considerably and showed an increasing tendency. Conclusions: These results suggested that the abatement project of diesel vehicle emissions by the Seoul metropolitan government from 2007 has had an impact on the reduction of DVE into the air, though there exist many things to consider for analyses.

Characteristics of Particulate Matter Concentration and Classification of Contamination Patterns in the Seoul Metropolitan Subway Tunnels (서울시 지하철 터널 내 입자상물질의 농도 특성 및 오염형태 분류)

  • Lee, Eun-Sun;Lee, Tae-Jung;Park, Min-Bin;Park, Duck-Shin;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.593-604
    • /
    • 2017
  • The suspended particulate matter(PM) was measured in subway tunnel of Seoul Line 1 to 9 in order to evaluate the pollution degree and characteristics of the PM in the subway tunnel. Also, to analyze the effect of outdoor aerosol concentration on the PM concentration of subway tunnels, the ambient PM concentration around the subway station was extracted by spatial analysis using $PM_{10}$ data of Seoul air pollution monitoring network. Finally, in order to understand pollution pattern in the Seoul subway tunnels, cluster analysis was performed based on input data set such as PM levels in tunnel, tunnel depth, length, curvature radius, outdoor ambient air pollution levels and so on. The average concentration of $PM_{10}$, $PM_{2.5}$, and $PM_1$ on subway tunnels were $98.0{\pm}37.4$, $78.4{\pm}28.7$, and $56.9{\pm}19.2{\mu}g/m^3$, respectively. As a result of the cluster analysis, tunnels from Seoul subway Line-1 to Line-9 were classified into five classes, and the concentrations and physical properties of the tunnels were compared. This study can provide a method to reduce PM concentration in tunnel for each pollution pattern and provide basic information about air quality control in Seoul subway tunnel.

The Composition of Non-methane Hydrocarbons Determined from a Tunnel of Seoul During Winter 2000

  • Kwangsam Na;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E2
    • /
    • pp.69-77
    • /
    • 2000
  • Measurements of non-methane hydrocarbons (NMHC) were carried out in the Sangdo tunnel and on a nearby roadway in Seoul during the during the periods of heavy(low speed with ∼20km h(sup)-1) and light(high speed with ∼60kmh(sup)-1) traffic in February 2000. In the tunnel, the total NMHC levels during the heavy traffic period were higher than those during the light traffic period by a factor of 2. This was due to the increase of emissions at the low vehicle speed period and the higher dilution effect derived from faster flow of tunnel air at the high vehicle speed period. The average total NMHC concentration in the tunnel was 1.7 times as high as that on the roadway. The species with the highest concentration in the tunnel was ethylene(50.1 ppb), followed by n-butane(34.1 ppb) and propane (21.9 ppb). The concentration ranking in the tunnel was generally in good agreement with that on the roadway, suggesting that the NMHC compositions in the tunnel and on the nearby roadway were primarily determined by vehicle exhausts. However, the NMHC compositions in the Sangdo tunnel do not agree well with other foreign study results, reflecting that the characteristics of vehicle exhausts of Seoul is different from those of other cities. The most prominent difference between this study and other studies is the high mass fractions of butanes and propane. It was be attributed to the wide use of butane-fueled vehicles.

  • PDF

Development of Road Tunnel Ventilation System with Electrostatic Precipitator (도로터널용 전기집진시스템 개발)

  • Kim, Jong-Ryul;Weon, Jong-Oung
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.80-83
    • /
    • 2008
  • As SOC (Social Overhead Capital) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, we may need to introduce a compulsory ventilation system as well as natural ventilation mechanism. The natural ventilation mechanism is enough for short tunnels, meanwhile longer tunnels require a specific compulsory ventilation facility. Many foreign countries already have been devoting on development of effective tunnel ventilation system and especially, some European nations and Japan have already applied their developed tunnel ventilation system for longer road tunnels. More recently, as the quality of life improved, our concerns about safety of driving and better driving environment have been increased. In order to obtain clearer and longer driving view, we are more interested in EP tunnel ventilation system in order to remove floating contaminants and automobile exhaust gas. Evan though it's been a long time since many European countries and Japan applied more economical and environment-friendly tunnel ventilation system with their self-developed Electrostatic Precipitator, we are still dependant on imported system from foreign nations. Therefore, we need to develop our unique technical know-how for optimum design tools through validity investigation and continuous possibility examination, eventually in order to localize the tunnel ventilation system technology. In this project, we will manufacture test-run products to examine the performance of system in order to develop main parts of tunnel ventilation system such as electrostatic precipitator, high voltage power generator, water treatment system, etc.

  • PDF

Estimation of Ventilation Volume by Traffic Ventilation Force in Tunnel (교통환기력에 의한 터널내 환기량 추정에 관한 연구)

  • 김종호;이상칠;도연지;김신도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.273-278
    • /
    • 1995
  • This study is to estimate the ventilation volume by the traffic that originated from driving automobiles for two tunnels (Kugi tunnel and Kumhwa tunnel) that adopted natural ventilation system among tunnels of Seoul, and on the basis of which, we estimated the ventilation velume at various conditions. With the result of the estimation, we will present the basic method that can be operated with the optimum condition for the ventilation system. Estimating the predicted ventilation volume in the tennel by the pollutant concentration, we used traffic volume and CO emission data by the automobile speed and CO concentration in the tunnel. And, when we estimated the traffic ventilation volume by natural and traffic ventilation force, we used traffic volume, automobile speed, tunnel area, automobile area data and so on. As the result of simple regression between predicted ventilation volume and traffic ventilation volume, we attained the regression coefficient 0.88, and achieved the relation form that predicted ventilation volume equal 0.12x traffic ventilation volume-92, 000. Using this equation, we estimated the ventilation volume to satisfy the enviromnental standards of several space, and calculated the required volume for mechanical ventilation. Incase of Kumhwa Tunnel, there is a need of mechanical ventilation all day long to satisfy air quality standard 9 ppm for 8 hours average and 10 ppm for the indoor air quality standard of public facilities.

  • PDF

Interaction between two neighboring tunnel using PFC2D

  • Sarfarazi, V.;Haeri, Hadi;Safavi, Salman;Marji, Mohammad Fatehi;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.77-87
    • /
    • 2019
  • In this paper, the interaction between two neighboring tunnel has been investigated using PFC2D. For this purpose, firstly calibration of PFC was performed using Brazilian experimental test. Secondly, various configuration of two neighboring tunnel was prepared and tested by biaxial test. The maximum and minimum principle stresses were 0.2 and 30 MPa respectively. The modeling results show that in most cases, the tensile cracks are dominant mode of cracks that occurred in the model. With increasing the diameter of internal circle, number of cracks decreases in rock pillar also number of total cracks decreases in the model. The rock pillar was heavily broken when its width was too small. In fixed quarter size of tunnel, the crack initiation stress decreases with increasing the central tunnel diameter. In fixed central tunnel size, the crack initiation stress decreases with increasing the quarter size of tunnel.

A Study on Clogging and Hydraulic Properties for Drain Filters of Tunnels (터널배수재 필터의 폐색 및 수리적 특성에 관한 연구)

  • 문준석;한봉수;장연수;이두화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.111-115
    • /
    • 2001
  • Durability of tunnel drains is important, because the accumulation of groundwater around the tunnel due to clogging of filter or reduction of discharge capacity of drain causes reduction of the life time of tunnel linings. In this paper, clogging and discharge capacity of drain and filter of tunnels are evaluated using a gradient ratio test and filter design criteria. The results of the gradient ratio test showed that gradient ratio(GR) is high when fine content is high in the soil samples and equivalent opening size(EOS) of filter materials is small. Measured GR was less than allowable critical gradinet ratio : 3.0, which is the clogging criteria of U.S. Army Corps of Engineers.

  • PDF

Generation of a Turbulent Boundary Layer Using LES (LES를 이용한 난류경계층의 생성에 관한 연구)

  • Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.680-687
    • /
    • 2007
  • The paper presents a numerical simulation of flow of a turbulent boundary layer, representing a typical wind environment and matching a series of wind tunnel observations. The simulations are carried out at a Reynolds number of 20,000, based on the velocity U at a pseudo-height h, and large enough that the flow be effectively Reynolds number independent. Some wall models are proposed for the LES(Large Eddy Simulation) of the turbulent boundary layer over a rough surface. The Jenson number, $J=h/z_0$, based on the roughness length $z_0$, is 600 to match the wind tunnel data. The computational mesh is uniform with a spacing of h/32, as this aids rapid convergence of the multigrid solver, and the governing equations are discretised using second order finite differences within a parallel multiblock environment. The results presented include the comparison between wind tunnel measurements and LES computations of the turbulent boundary layer over rough surface.