• Title/Summary/Keyword: Tungsten Carbide Tools

Search Result 42, Processing Time 0.029 seconds

Cutting Force Analysis in End Milling Process for High-Speed Machining of Difficult-to-Cut Materials (난삭재 고속가공에서의 엔드밀링 공정의 절삭력 해석)

  • 전태수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.359-364
    • /
    • 1999
  • Due to rapid growth of die and mould industries, it is urgently required to maximize the productivity and the efficiency of machining. In recent years, owing to the development of new kinds of material, die and mould materials are much harder and it is more difficult to cut. In this study, the workpiece SKD11(HRC45) is cut with TiAlN coated tungsten-carbide cutting tools. To find the general characteristics of difficult-to-cut materials, orthogonal turning test is performed. Orthogonal cutting theory can be expanded to oblique cutting model. The oblique cutting process in the small cutting edge element has been analyzed as orthogonal cutting process in the plane containing the cutting velocity vector and chip-flow vector. Hence, with the orthogonal cutting data obtained from orthogonal turning test, the cutting forces can be analyzed through oblique cutting model. The simulation results have shown a fairy good agreement with the test results.

  • PDF

A Study on Cutting Characteristic in Turning Ductile Cast Iron(FCD500) (구상화 흑연주철(FCD500)의 가공성에 관한 연구)

  • Oh, Sung-Hoon;Kim, Ho-Geon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.67-71
    • /
    • 2012
  • The purpose of this study is to investigate cutting characteristics and wear behavior in FCD500 ductile cast iron turning with different cutting tools, tungsten-carbide and CBN. Mechanical property, cutting characteristics and the application to the real industrial area is the final purpose. FDC500 ductile cast iron is now widely used in the various commercial vehicle parts for increased machine abilities which accrue more tensile strength with lower hardness. Several studies have been fulfilled for the material and heat-treatment area, but few with the cutting characteristics and wear behavior in the turning area.

Micro Hole Machining for Ceramics ($Al_2O_3$) Using Ultrasonic Vibration (초음파 진동을 이용한 세라믹 소재의 마이크로 홀 가공)

  • 박성준;이봉구;최헌종
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2004
  • Ultrasonic machining is a non-thermal, non-chemical, md non-electorial material removal process, and thus results in minimum modifications in mechanical properties of the brittle material during the process. Also, ultrasonic machining is a non-contact process that utilize ultrasonic vibration to impact a brittle material. In this research characteristics of micro-hole machining for brittle materials by ultrasonic machining(USM) process have been investigated. And the effect of ultrasonic vibration on the machining conditions is analyzed when machining fir non-conductive brittle materials using tungsten carbide tools with a view to improve form and machining accuracy.

Deposition of Diamond Like Carbon Thin Films by PECVD (PECVD법에 의한 DLC 박막의 증착)

  • 김상호;김동원
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.2
    • /
    • pp.122-128
    • /
    • 2002
  • This study was conducted to synthesize the diamond like carbon films by plasma enhanced chemical vapor deposition (PECVD). The effects of gas composition on growth and mechanical properties of the films were investigated. A little amount of hydrogen or oxygen were added to base gas mixture of methane and argon. Methane dissociation and diamond like carbon nucleation were enhanced by installing negatively bias grid near substrate. The deposited films were indentified as hard diamond like carbon films by micro-Raman spectroscopy. The surface and fractured cross section of the films which were observed by scanning electron microscopy showed that film growth is very slow as about 0.3$\mu\textrm{m}$/hour, and relatively uniform with hydrogen addition. Vickers hardness of tungsten carbide (WC) cutting tool increased from about 1000 to 1600~1800 by deposition of DLC film, that of commercial TiN coated tool was about 1270. In cutting test of aluminum 6061 alloy, DLC coated cutting tool showed 1/3 or lower crater and flank wear than TiN coated or non-coated WC cutting tools.

A Study of Cutting Factor Analysis and Reliability Evaluation of ASTM(F136-96) Material by Taguchi Method (다구치 방법에 의한 ASTM(F136-96)의 절삭인자 분석과 신뢰성 평가)

  • Jang, Sung-Minl;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • Machine operator and quality are affected by chip during cutting process to product machine parts. This paper presents a study of the influence of cutting conditions on the surface roughness obtained by turning using Taguchi method for safety of turning operator. In the machining of titanium alloy, high cutting temperature and strong chemical affinity between the tool and the work material are generated because of its low thermal conductivity and chemical reactivity. Therefore titanium alloys are known as difficult-to materials. An orthogonal array, the signal-to-noise ratio, the analysis of variance are employed to investigate the cutting characteristics of implant material bars using tungsten carbide cutting tools of throwaway type. Also Experimental results by orthogonal array are compared with optimal condition to evaluate advanced reliability. Required simulations and experiments are performed, and the results are investigated.

Enhanced Wear Resistance of Cutting Tools Using Multilayer ta-C Coating (다층막 ta-C 코팅 적용을 통한 절삭공구의 내마모성 향상)

  • Kim, Do Hyun;Kang, Yong-Jin;Jang, Young-Jun;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.360-368
    • /
    • 2020
  • Wear resistance of cutting tools is one of the most important requirements in terms of the durability of cutting tool itself as well as the machining accuracy of the workpiece. Generally, tungsten carbide ball end mills have been processed with hard coatings for high durability and wear resistance such as diamond coating and tetrahedral amorphous carbon(ta-C) coating. In this study, we developed multilayer ta-C coatings whose wear resistance is comparable to that of diamond coating. First, we prepared single layer ta-C coatings according to the substrate bias voltage and Ar gas flow, and the surface microstructure, raman characteristics, hardness and wear characteristics were evaluated. Then, considering the hardness and wear resistance of the single layer ta-C, we fabricated multilayer coatings consisting of hard and soft layers. As a result, it was confirmed that the wear resistance of the multilayer ta-C coating with hardness of 51 GPa, and elastic recovery rate of 85% improved to 97% compared to that of the diamond coated ball end mill.

Micro Cutting of Tungsten Carbides with SEM Direct Observation Method

  • jung, Heo-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.770-779
    • /
    • 2004
  • This paper describes the micro cutting of wear resistant tungsten carbides using PCD (Poly-Crystalline Diamond) cutting tools in performance with SEM (Scanning Electron Microscope) direct observation method. Turning experiments were also carried out on this alloy (V50) using a PCD cutting tool. One of the purposes of this study is to describe clearly the cutting mechanism of tungsten carbides and the behavior of WC particles in the deformation zone in orthogonal micro cutting. Other purposes are to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, machined surface and tool wear rates by the outer turning of this alloy carried out using the PCD cutting tool during these various cutting conditions. A summary of the results are as follows: (1) From the SEM direct observation in cutting the tungsten carbide, WC particles are broken and come into contact with the tool edge directly. This causes tool wear in which portions scrape the tool in a strong manner. (2) There are two chip formation types. One is where the shear angle is comparatively small and the crack of the shear plane becomes wide. The other is a type where the shear angle is above 45 degrees and the crack of the shear plane does not widen. These differences are caused by the stress condition which gives rise to the friction at the shear plane. (3) The thrust cutting forces tend to increase more rapidly than the principal forces, as the depth of cut and the cutting speed are increased preferably in the orthogonal micro cutting. (4) The tool wear on the flank face was larger than that on the rake face in the orthogonal micro cutting. (5) Three components of cutting force in the conventional turning experiments were different in balance from ordinary cutting such as the cutting of steel or cast iron. Those expressed a large value of thrust force, principal force, and feed force. (6) From the viewpoint of high efficient cutting found within this research, a proper cutting speed was 15 m/min and a proper feed rate was 0.1 mm/rev. In this case, it was found that the tool life of a PCD tool was limited to a distance of approximately 230 m. (7) When the depth of cut was 0.1 mm, there was no influence of the feed rate on the feed force. The feed force tended to decrease, as the cutting distance was long, because the tool was worn and the tool edge retreated. (8) The main tool wear of a PCD tool in this research was due to the flank wear within the maximum value of $V_{max}$ being about 260 $\mu\textrm{m}$.

Recovery of Tungsten from WC-Co Hardmetal Sludge by Aqua regia Treatment (WC-Co 초경합금(超硬合金) 슬러지로부터 왕수처리(王水處理)를 이용한 텅스텐의 회수(回收))

  • Kim, Ji-Hye;Kim, Eun-Young;Kim, Won-Back;Kim, Byung-Su;Lee, Jae-Chun;Shin, Jae-Soo
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2010
  • A fundamental study was carried out to develop a process for recycling tungsten and cobalt from WC-Co hardmetal sludge generated in the manufacturing process of hardmetal tools. The complete extraction of cobalt and simultaneous formation of tungstic was achieved by treating the sludge using aqua regia. The effect of aqua regia concentration, reaction temperature and time, pulp density on cobalt leaching and tungstic acid formation was investigated. The complete leaching of cobalt was attained at the optimum conditions: 100 vol.% aqua regia concentration, $100^{\circ}C$ temperature, 60 min. reaction time and 400 g/L pulp density. A complete conversion of tungsten carbide of the sludge to tungstic acid was however, obtained at the pulp densities lower than 150 g/L under the above condition. The progress of reaction during the aqua regia treatment of the sludge was monitored through the XRD phase identification of the residue. The metallic impurities in the tungstic acid so produced could be further removed as insoluble residues by dissolving the tungsten values in ammonia solution. The ammonium paratungstate($(NH_4)_{10}{\cdot}H_2W_{12}O_{42}{\cdot}4H_2O$) of 99.85% purity was prepared from the ammonium polytungstate solution by the evaporation crystallization method.

Fabrication of PCD Micro Tool and its Hybrid Micro Machining (다결정 다이아몬드를 이용한 미세 공구 제작과 이를 이용한 미세 복합 가공)

  • Doan, Cao Xuan;Kim, Bo-Hyun;Chung, Do-Kwan;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.694-700
    • /
    • 2011
  • Since polycrystalline diamond (PCD) has high hardness like diamond, it has been used as tool material for lathe and milling of non-ferrite material. A micro tool fabricated from PCD material can be used for micro machining of hard material such as tungsten carbide, glass, and ceramics. In this paper, micro PCD tools were fabricated by micro EDM (electrical discharge machining) and used for micro grinding of glass. Craters generated on the tool surface by EDM spark work as like grits in grinding process. The effects of tool shapes, tool roughness and PCD grain size were investigated. Also studied was a hybrid process combining electrochemical discharge machining (ECDM) and micro grinding for micro-structuring of glass.

A Study on the Surface Roughness of Aluminum Alloy by Response Surface Nethod (응답표면법에 의한 알루미늄합금의 가공면 거칠기에 관한 연구)

  • Gu, Ja-Sung;Kim, Won-Il;Lee, Yun-Kyung;Wang, Duk-Hyun;Park, Ji-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • The purpose of this experimental study is to gain equations for the prediction of surface roughness depending on the three major parameters(the cutting speed, the feed rate and the nose radius). It is the merit of Response Surface Methodology that the test time is reduced to minimum size and accurate analysis can be done. On this study, first, made specimen, Al 5052 BE material which is widely used in school and cut the specimen with coated tungsten carbide tools, by varying the cutting conditions, such as the cutting speed, the feed rate and the nose radius. In conclusion, the surface roughness was most greatly influenced by the feed rate. And Surface Roughness equation gained by experiment is as followed $$R=58.2\;v^{-0.22}f^{1.7}r^{-0.66}$$.

  • PDF