• Title/Summary/Keyword: Tuned Liquid Column

Search Result 48, Processing Time 0.027 seconds

Bi-directional response control of a building using one TLD (1 개의 TLD 를 이용한 건물의 양방향 진동제어)

  • Min, Kyung-Won;Lee, Sung-Kyung;Park, Eun-Churn
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.119-124
    • /
    • 2009
  • This paper proposes a tuned liquid column sloshing damper(TLCSD) and presents experimental results to evaluate its control performance. The proposed damper acts as a tuned liquid column damper(TLCD) and a tuned liquid damper(TLD), respectively, in both principal axes of building structures. Shaking table test was performed to grasp its dynamic characteristics. Testing results showed that under inclined incident excitations, a TLCSD used in this study have dynamic characteristics coupled by both TLCD and TLD.

  • PDF

The Vibration Performance Experiment of Tuned Liquid Damper and Tuned Liquid Column Damper

  • Kim Young-Moon;You Ki-Pyo;Cho Ji-Eun;Hong Dong-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.795-805
    • /
    • 2006
  • Tuned Liquid damper and Tuned Liquid Column are kind of passive mechanical damper which relies on the sloshing of liquid in a rigid tank for suppressing structural vibrations. TLD and TLCD are attributable to several potential advantages - low costs ; easy to install in existing structures : effective even for small-amplitude vibrations. In this paper, the shaking table experiments were conducted to investigate the characteristics of water sloshing motion in TLD (rectangular, circular) and TLCD. The parameter obtained from the experiments were wave height, base shear force and energy dissipation. The shaking table experiments show that the liquid sloshing relies on amplitude of shaking table and frequency of tank. The TLCD was more effective control vibration than TLD.

Design Parameter of a New Type Bi-directional Damper Using a Tuned Liquid Column Damper and a Tuned Sloshing Damper (TLCD와 TSD를 이용한 새로운 형태의 양방향 감쇠기 설계변수)

  • Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.850-856
    • /
    • 2009
  • A new type bi-directional damper using a tuned liquid column damper(TLCD) and a tuned sloshing damper(TSD) is introduced in this study. Two dampers are usually needed to reduce wind-induced responses of tall buildings since they are along and across wind ones. The proposed damper has the advantage of controlling both responses with one damper. One of objectives of this study is to derive analytical dynamics to investigate coupled effects due to TLCD and TSD. Another objective is to address the effect of coupled control force due to TLCD and TSD on the dynamic characteristic of the damper based on analytical dynamics. Shaking table test is undertaken to experimentally grasp dynamic characteristics of the damper under white noise excitation. Its dynamic characteristic is expressed by the transfer function from the shaking table acceleration to the control force generated from the damper. Finally, its design parameters are identified based on the coupled dynamics, which include the mass ratio of horizontal liquid column to total liquid for a TLCD, the participation factor of the fundamental liquid sloshing for a TSD and damping ratio for both cases.

Experimental Performance Evaluation of a 2-way TLMD using a TLCD and a Rubber Bearing-type TMD (TLCD와 고무패드형 TMD를 이용한 2방향 TLMD의 성능평가실험)

  • Heo, Jae-Sung;Kim, Hong-Jin;Jo, Bong-Ho;Jo, Ji-Seong;Park, Eun-Churn;Lee, Sang-Hyun;Lee, Sung-Kyung;Kim, Dong-Young;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.465-470
    • /
    • 2007
  • In this paper, a two-way tuned liquid mass damper(TLMD) using a tuned liquid column damper(TLCD) and a rubber-bearing-type tuned mass damper(TMD) was manufactured for controlling two-way direction acceleration responses of a high-rise building structure. The proposed controlling device behaves as a tuned liquid column damper in one direction and as a tuned mass damper in the other direction. In this study, Performance evaluation of the downscaled model is conducted. The results show that the two-way controllability is behaved independently each other and realscale TLMD applicable to the high-rise building can be designed.

  • PDF

Analytical and experimental investigations on the performance of tuned liquid column ball damper considering a hollow ball

  • Shah, Mati Ullah;Usman, Muhammad;Kim, In-Ho;Dawood, Sania
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.655-669
    • /
    • 2022
  • Passive vibration control devices like tuned liquid column dampers (TLCD) not only significantly reduce buildings' vibrations but also can serve as a water storage facility. The recently introduced modified form of TLCD known as tuned liquid column ball damper (TLCBD) suppressed external vibration efficiently compared to traditional TLCD. For excellent performance, the mass ratio of TLCBD should be in the range of 5% to 7%, which does not include the mass of the ball. This additional mass of the ball increases the overall structure mass. Therefore, in this paper, an effort is made to reduce the mass of TLCBD. For this purpose, a new modified version of TLCBD known as tuned liquid column hollow ball damper (TLCHBD) is proposed. The existing mathematical modeling of TLCBD is used for this new damper by updating the numerical values of the mass and mass moment of the ball. Analytically the optimal design parameters are obtained. Numerically the TLCHBD is investigated with a single degree of freedom structure under harmonic and seismic loadings. It is found that TLCHBD performance is similar to TLCBD in both loadings' cases. To validate the numerical results, an experimental study is conducted. The mass of the ball of TLCHBD is reduced by 50% compared to the ball of TLCBD. Both the arrangements are studied with a multi-degree of freedom structure under harmonic and seismic loadings using a shake table. The results of the experimental study confirm the numerical findings. It is found that the performance behavior of both the dampers is almost similar under harmonic and seismic loadings. In short, the TLCHBD is lighter in weight than TLCBD but has a similar vibration suppression ability.

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.

Innovative modeling of tuned liquid column damper controlled structures

  • Di Matteo, Alberto;Di Paola, Mario;Pirrotta, Antonina
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.117-138
    • /
    • 2016
  • In this paper a different formulation for the response of structural systems controlled by Tuned Liquid Column Damper (TLCD) devices is developed, based on the mathematical tool of fractional calculus. Although the increasing use of these devices for structural vibration control, it has been demonstrated that existing model may lead to inaccurate prediction of liquid motion, thus reflecting in a possible imprecise description of the structural response. For this reason the recently proposed fractional formulation introduced to model liquid displacements in TLCD devices, is here extended to deal with TLCD controlled structures under base excitations. As demonstrated through an extensive experimental analysis, the proposed model can accurately capture structural responses both in time and in frequency domain. Further, the proposed fractional formulation is linear, hence making identification of the involved parameters extremely easier.

Performance Test of a Tuned Liquid Mass Damper installed in a Real-Scaled Structure (실물크기 구조물에 설치된 동조액체질량감쇠기의 성능실험)

  • Heo, Jae-Sung;Park, Eun-Churn;Lee, Sung-Kyung;Lee, Sang-Hyun;Kim, Hong-Jin;Jo, Ji-Seong;Cho, Bong-Ho;Joo, Seok-Jun;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.161-168
    • /
    • 2008
  • In this paper, a tuned liquid mass damper(TLMD) was proposed and experimentally investigated on its control performance, which can control bi-axial responses of building structures by using only one device. The proposed TLMD controls the structural response in a specific one direction by using a liquid sloshing of TLCD. Also, the TLMD reduces the response of structures in the other orthogonal direction by behaving as a TMD that uses mass of the container itself and liquid within container of TLCD installed on linear motion guides. Force-vibration tests on a real-sized structure installed with the TLMD were performed to verify its independent behavior in two orthogonal directions. Test results showed that the responses of a structure were considerably reduced by using the proposed TLMD and its usefulness for structural control in two orthogonal directions.

Buffeting response control of a long span cable-stayed bridge during construction using semi-active tuned liquid column dampers

  • Shum, K.M.;Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.271-296
    • /
    • 2006
  • The frequency of a traditional tuned liquid column damper (TLCD) depends solely on the length of liquid column, which imposes certain restrictions on its application to long span cable-stayed bridges during construction. The configuration of a cable-stayed bridge varies from different construction stages and so do its natural frequencies. It is thus difficult to apply TLCD with a fixed configuration to the bridge during construction or it is not economical to design a series of TLCD with different liquid lengths to suit for various construction stages. Semi-active tuned liquid column damper (SATLCD) with adaptive frequency tuning capacity is studied in this paper for buffeting response control of a long span cable-stayed bridge during construction. The frequency of SATLCD can be adjusted by active control of air pressures inside the air chamber at the two ends of the container. The performance of SATLCD for suppressing combined lateral and torsional vibration of a real long span cable-stayed bridge during construction stage is numerically investigated using a finite element-based approach. The finite element model of SATLCD is also developed and incorporated into the finite element model of the bridge for predicting buffeting response of the coupled SATLCD-bridge system in the time domain. The investigations show that with a fixed container configuration, the SATLCD with adaptive frequency tuning can effectively reduce buffeting response of the bridge during various construction stages.

Optimal damping ratio of TLCDs

  • Chen, Yung-Hsiang;Chao, Chen-Chi
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.227-240
    • /
    • 2000
  • The study of the optimal damping ratio of a tuned liquid-column damper (or TLCD) attached to a single-degree-of-freedom system is presented. The tuned liquid-column damper is composed of two vertical columns connected by a horizontal section in the bottom and partially filled with water. The ratio of the length of the horizontal section to the effective wetted length of a TLCD considered as another important parameter is also presented for investigation. A simple pendulum-like model test is conducted to simulate a long-period motion in order to prove the effectiveness of TLCD for vibrational control. Comparisons of the experimental and analytic results of the TLCD, TLD (tuned-liquid damper), and TMD (tuned-mass damper) are included for discussion.