• 제목/요약/키워드: Tumorigenicity

검색결과 64건 처리시간 0.023초

New therapeutic approach with extracellular vesicles from stem cells for interstitial cystitis/bladder pain syndrome

  • Dayem, Ahmed Abdal;Song, Kwonwoo;Lee, Soobin;Kim, Aram;Cho, Ssang-Goo
    • BMB Reports
    • /
    • 제55권5호
    • /
    • pp.205-212
    • /
    • 2022
  • Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disorder characterized by suprapubic pain and urinary symptoms such as urgency, nocturia, and frequency. The prevalence of IC/BPS is increasing as diagnostic criteria become more comprehensive. Conventional pharmacotherapy against IC/BPS has shown suboptimal effects, and consequently, patients with end-stage IC/BPS are subjected to surgery. The novel treatment strategies should have two main functions, anti-inflammatory action and the regeneration of glycosaminoglycan and urothelium layers. Stem cell therapy has been shown to have dual functions. Mesenchymal stem cells (MSCs) are a promising therapeutic option for IC/BPS, but they come with several shortcomings, such as immune activation and tumorigenicity. MSC-derived extracellular vesicles (MSC-EVs) hold numerous therapeutic cargos and are thus a viable cell-free therapeutic option. In this review, we provide a brief overview of IC/BPS pathophysiology and limitations of the MSC-based therapies. Then we provide a detailed explanation and discussion of therapeutic applications of EVs in IC/BPS as well as the possible mechanisms. We believe our review will give an insight into the strengths and drawbacks of EV-mediated IC/BPS therapy and will provide a basis for further development.

Downregulation of SETD5 Suppresses the Tumorigenicity of Hepatocellular Carcinoma Cells

  • Park, Mijin;Moon, Byul;Kim, Jong-Hwan;Park, Seung-Jin;Kim, Seon-Kyu;Park, Kihyun;Kim, Jaehoon;Kim, Seon-Young;Kim, Jeong-Hoon;Kim, Jung-Ae
    • Molecules and Cells
    • /
    • 제45권8호
    • /
    • pp.550-563
    • /
    • 2022
  • Hepatocellular carcinoma (HCC) is an aggressive and incurable cancer. Although understanding of the molecular pathogenesis of HCC has greatly advanced, therapeutic options for the disease remain limited. In this study, we demonstrated that SETD5 expression is positively associated with poor prognosis of HCC and that SETD5 depletion decreased HCC cell proliferation and invasion while inducing cell death. Transcriptome analysis revealed that SETD5 loss downregulated the interferon-mediated inflammatory response in HCC cells. In addition, SETD5 depletion downregulated the expression of a critical glycolysis gene, PKM (pyruvate kinase M1/2), and decreased glycolysis activity in HCC cells. Finally, SETD5 knockdown inhibited tumor growth in xenograft mouse models. These results collectively suggest that SETD5 is involved in the tumorigenic features of HCC cells and that targeting SETD5 may suppress HCC progression.

New established cell lines from undifferentiated pleomorphic sarcoma for in vivo study

  • Eun-Young Lee;Young-Ho Kim;Md Abu Rayhan;Hyun Guy Kang;June Hyuk Kim;Jong Woong Park;Seog-Yun Park;So Hee Lee;Hye Jin You
    • BMB Reports
    • /
    • 제56권4호
    • /
    • pp.258-264
    • /
    • 2023
  • As a high-grade soft-tissue sarcoma (STS), undifferentiated pleomorphic sarcoma (UPS) is highly recurrent and malignant. UPS is categorized as a tumor of uncertain differentiation and has few options for treatment due to its lack of targetable genetic alterations. There are also few cell lines that provide a representative model for UPS, leading to a dearth of experimental research. Here, we established and characterized new cell lines derived from two recurrent UPS tissues. Cells were obtained from UPS tissues by mincing, followed by extraction or dissociation using enzymes and culture in a standard culture environment. Cells were maintained for several months without artificial treatment, and some cell clones were found to be tumorigenic in an immunodeficient mouse model. Interestingly, some cells formed tumors in vivo when injected after aggregation in a non-adherent culture system for 24 h. The tissues from in vivo study and tissues from patients shared common histological characteristics. Pathways related to the cell cycle, such as DNA replication, were enriched in both cell clones. Pathways related to cell-cell adhesion and cell-cell signaling were also enriched, suggesting a role of the mesenchymal-to-epithelial transition for tumorigenicity in vivo. These new UPS cell lines may facilitate research to identify therapeutic strategies for UPS.

Identification of Potential Prognostic Biomarkers in lung cancer patients based on Pattern Identification of Traditional Korean Medicine Running title: A biomarker based on the Korean pattern identification for lung cancer

  • Ji Hye Kim;Hyun Sub Cheong;Chunhoo Cheon;Sooyeon Kang;Hyun Koo Kim;Hyoung Doo Shin;Seong-Gyu Ko
    • 대한예방한의학회지
    • /
    • 제27권2호
    • /
    • pp.35-48
    • /
    • 2023
  • Objective : We studied prognostic biomarkers discovery for lung cancer based on the pattern identification for the personalized Korean medicine. Methods : Using 30 tissue samples, we performed a whole exome sequencing to examine the genetic differences among three groups. Results : The exome sequencing identified among 23,490 SNPs germline variants, 12 variants showed significant frequency differences between Xu and Stasis groups (P<0.0005). As similar, 18 and 10 variants were identified in analysis for Xu vs. Gentleness group and Stasis vs. Gentleness group, respectively (P<0.001). Our exome sequencing also found 8,792 lung cancer specific variants and among the groups identified 6, 34, and 12 variants which showed significant allele frequency differences in the comparison groups; Xu vs. Stasis, Xu vs. Gentleness group, and Stasis vs. Gentleness group. As a result of PCA analysis, in germline data set, Xu group was divided from other groups. Analysis using somatic variants also showed similar result. And in gene ontology analysis using pattern identification variants, we found genes like as FUT3, MYCBPAP, and ST5 were related to tumorigenicity, and tumor metastasis in comparison between Xu and Stasis. Other significant SNPs for two were responsible for eye morphogenesis and olfactory receptor activity. Classification of somatic pattern identification variants showed close relationship in multicellular organism reproduction, anion-anion antiporter activity, and GTPase regulator activity. Conclusions : Taken together, our study identified 40 variants in 29 genes in association with germline difference of pattern identification groups and 52 variants in 47 genes in somatic cancer tissues.

Stem Cell Properties of Gastric Cancer Stem-Like Cells under Stress Conditions Are Regulated via the c-Fos/UCH-L3/β-Catenin Axis

  • Jae Hyeong Lee;Sang-Ah Park;Il-Geun Park;Bo Kyung Yoon;Jung-Shin Lee;Ji Min Lee
    • Molecules and Cells
    • /
    • 제46권8호
    • /
    • pp.476-485
    • /
    • 2023
  • Gastric cancer stem-like cells (GCSCs) possess stem cell properties, such as self-renewal and tumorigenicity, which are known to induce high chemoresistance and metastasis. These characteristics of GCSCs are further enhanced by autophagy, worsening the prognosis of patients. Currently, the mechanisms involved in the induction of stemness in GCSCs during autophagy remain unclear. In this study, we compared the cellular responses of GCSCs with those of gastric cancer intestinal cells (GCICs) whose stemness is not induced by autophagy. In response to glucose starvation, the levels of β-catenin and stemness-related genes were upregulated in GCSCs, while the levels of β-catenin declined in GCICs. The pattern of deubiquitinase ubiquitin C-terminal hydrolase-L3 (UCH-L3) expression in GCSCs and GCICs was similar to that of β-catenin expression depending on glucose deprivation. We also observed that inhibition of UCH-L3 activity reduced β-catenin protein levels. The interaction between UCH-L3 and β-catenin proteins was confirmed, and it reduced the ubiquitination of β-catenin. Our results suggest that UCH-L3 induces the stabilization of β-catenin, which is required to promote stemness during autophagy activation. Also, UCH-L3 expression was regulated by c-Fos, and the levels of c-Fos increased in response to autophagy activation. In summary, our findings suggest that the inhibition of UCH-L3 during nutrient deprivation could suppress stress resistance of GCSCs and increase the survival rates of gastric cancer patients.

Comparing the Benefits and Drawbacks of Stem Cell Therapy Based on the Cell Origin or Manipulation Process: Addressing Immunogenicity

  • Sung-Ho Chang;Chung Gyu Park
    • IMMUNE NETWORK
    • /
    • 제23권6호
    • /
    • pp.44.1-44.16
    • /
    • 2023
  • Mesenchymal stem cells (MSCs) are effective in treating autoimmune diseases and managing various conditions, such as engraftment of allogeneic islets. Additionally, autologous and HLA-matched allogeneic MSCs can aid in the engraftment of human allogeneic kidneys with or without low doses of tacrolimus, respectively. However, HLA alloantigens are problematic because cell therapy uses more HLA-mismatched allogeneic cells than autologous for convenience and standardization. In particular, HLA-mismatched MSCs showed increased Ag-specific T/B cells and reduced viability faster than HLA-matched MSCs. In CRISPR/Cas9-based cell therapy, Cas9 induce T cell activation in the recipient's immune system. Interestingly, despite their immunogenicity being limited to the cells with foreign Ags, the accumulation of HLA alloantigen-sensitized T/B cells may lead to allograft rejection, suggesting that alloantigens may have a greater scope of adverse effects than foreign Ags. To avoid alloantigen recognition, the β2-microglobulin knockout (B2MKO) system, eliminating class-I MHC, was able to avoid rejection by alloreactive CD8 T cells compared to controls. Moreover, universal donor cells in which both B2M and Class II MHC transactivator (CIITA) were knocked out was more effective in avoiding immune rejection than single KO. However, B2MKO and CIITA KO system remain to be controlled and validated for adverse effects such as the development of tumorigenicity due to deficient Ag recognition by CD8 T and CD4 T cells, respectively. Overall, better HLA-matching or depletion of HLA alloantigens prior to cell therapy can reduce repetitive transplantation through the long-term survival of allogeneic cell therapy, which may be especially important for patients seeking allogeneic transplantation.

Lewis 폐암 마우스 모델에서 Retroviral Vector나 Adenoviral Vector로 이입된 Herpes Simplex Virus Thymidine Kinase 유전자치료 (Herpes Simplex Virus Thymidine Kinase Gene Therapy Delivered by Retroviral or Adenoviral Vector in Mouse Model of Lewis Lung Carcinoma)

  • 권희충;정재민;김정현;함용호;서지숙;이기호;김창민;이한수;이춘택
    • Tuberculosis and Respiratory Diseases
    • /
    • 제49권3호
    • /
    • pp.298-309
    • /
    • 2000
  • 연구배경 : 암 유전자치료에서 각광받고 있는 HSV-tk/GCV 전략의 항암효과에는 다음과 같은 장점들이 거론되고 있다 : 1) GCV 처리에 의한 암세포 직접살상효과 2) HSV-tk 이입된 세포에 의해서 HSV-tk 이입되지 않은 주변세포를 살상하는 bystander effect 3) 생체 내 bystander eff ect로 알려 진 anti-tumor immunity. Retrovirus와 adenovirus sequence를 이용할 경우 몇몇 세포주와 마우스에서 이들이 목적유전자의 발현을 억제할 수 있다는 것이 보고되고 있다. 본 연구에서는 retroviral나 adenoviral vector로 HSV-tk 유전자를 이입한 Lewis 폐암세포주와 폐암 마우스 모델을 통하여 HSV-tk/GCV 전략의 장점을 조사하였고 이 viral vector들 사이의 차이를 비교 조사하였다. 또한 Lewis 폐암세포주에서 butyrate를 처리한 후 HSV-tk 유전자의 발현증가를 관찰하였다. 방법 : Lewis retroviral vector와 adenoviral vector로 HSV-tk 유전자를 이입한 후 butyrate로 HSV-tk 유전자의 발현을 유도하고 Western blotting수행하여 분석하였다. 생체 외에서 HSV-tk/GCV에 의한 세포살상효과를 MTT 검사로 수행하였고 생체 내에서 LLC 나 HSV-tk 이입된 LLC 세포주를 이식하여 종양소멸 및 bystander effect를 조사 하였다. 결과 : 1. Butyrate로 HSV-tk adenovirus로 이입된 LLC에서 증가한 반면 retrovirus로 이입된 LLC에서는 증가하지 않았다. 2. 생체 외 그리고 생체 내에서 viral vector로 HSV-tk를 이입한 종양세포에 GCV 투여하는 것은 종양 세포의 살상에 효과적이었으며 LLC와 LLC-tk 세포주를 혼합한 실험에서 bystander effect도 종양세포의 성장을 억제하는 것으로 관찰되었다. 결론 : 향후 생체 외 그리고 생체 내 실험에서 adenoviral vector를 이용한 유전자 전달에 butyrate를 함께 사용하면 유전자발현을 증진시킬 것으로 사료되며 자살 유전자인 HSV-tk을 종양에 이입하여 GCV을 처리 하는 치료가 폐암유전자치료에 효과가 있을 것으로 생각된다.

  • PDF

TIMP-2 유전자 재조합 아데노바이러스의 폐암세포 침윤 억제 효과 (TIMP-2 Gene Transfer Via Adenovirus Inhibits the Invasion of Lung Cancer Cell)

  • 오연목;이재호;유철규;정회순;김영환;한성구;심영수;이춘택
    • Tuberculosis and Respiratory Diseases
    • /
    • 제49권2호
    • /
    • pp.189-197
    • /
    • 2000
  • 연구배경 : 폐암은 진단 당시 이미 국소 침윤이나 원격 전이가 된 경우가 많고 이에 대한 적절한 치료법이 없기 때문에 예후가 불량하다. TIMP(tissue inhibitor of metalloproteinase)는 암세포의 침윤 및 전이에 중요한 역할을 하는 metalloproteinase를 억제하는 물질로서 생체 내에 존재하는 전이 억제 물질이다. 본 연구는 아데노바이러스를 이용한 TIMP 유전자 치료법을 개발하여 폐암의 치료에 응용하고자 하였다. 방법 : 폐암세포는 침윤 및 전이 능력이 큰 Calu-6를 사용하였다. TIMP-2 유전자를 pACCMVpLpA에 subcloning 한 후 pJM17과 함께 293 cell에 cotransfection 한 후 homologous recombination을 이용하여 Ad-TIMP-2를 제작하였다. Ad-TIMP-2를 Calu-6 cell에 이입하여 TIMP-2 protein 이 생산되는지를 TIMP-2 ELISA를 이용하여 확인하였고 TIMP-2의 생물학적 활성은 zymography로 확인하였다. Soft agar clonogenic assay로 종양형성능을 평가하였다. Ad-TIMP-2로 처리한 calu-6를 6주간 soft agar에서 키운 후 육안으로 보이는 colony 수를 측정하였다. Matrigel을 이용하여 invasion assay를 시행하여 calu-6의 침윤 능력의 변화를 평가하였다. 결과 : TIMP-2 ELISA 결과, 모세포 calu-6와 Ad-$\beta$-gal 이입 calu-6 그리고 Ad-TIMP-2 이입 calu-6는 각각 0.44, 0.43, 20.7 ${\mu}g/10^6$ cells/72hrs의 TIMP-2를 생산하였다. Zymography 결과 Ad-TIMP-2에 의해 생산된 TIMP-2는 matrix metalloproteinase-2의 gelatin 분해 효과를 억제하여 생물학적 활성을 확인할 수 있었다. Soft agar clonogenic assay 결과, 모세포인 calu-6는 453$\pm$53개, Ad-$\beta$gal과 Ad-TIMP-2 이입된 calu-6는 각각 332$\pm$35, 280$\pm$45개의 colony가 형성되어 유의한 감소를 보이지 못했다. Invasion assay 로 모세포 calu-6 에 대한 침윤율을 평가한 결과, Ad-$\beta$gal과 Ad-TIMP-2가 이입된 calu-6(10moi)는 각각 71$\pm$8.9%, 12$\pm$8.4%의 침윤율을 보였으며 $\beta$-gal 군에 비해 TIMP-2군이 유의하게 침윤율이 낮았다. 결론 : Ad-TIMP-2는 폐암 세포의 종양형성능을 억제하지 못하였으나 침윤은 억제하여 TIMP-2가 폐암 유전자 요법에 이용될 가능성을 제시해 주었다.

  • PDF

MethA Fibrosarcoma Cells Expressing Membrane-Bound Forms of IL-2 Enhance Antitumor Immunity

  • Sonn, Chung-Hee;Yoon, Hee-Ryung;Seong, In-Ock;Chang, Mi-Ra;Kim, Yong-Chan;Kang, Han-Chul;Suh, Seok-Cheol;Kim, Young-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권12호
    • /
    • pp.1919-1927
    • /
    • 2006
  • Tumor cells genetically engineered to secrete cytokines are effective in tumor therapy, but various unexpected side effects are observed, which may result from the bulk activation of various bystander cells. In this study, we tested tumor vaccines expressing various membrane-bound forms of IL-2 (mbIL-2) on MethA fibrosarcoma cells to focus antitumor immune responses to CTL. Chimeric forms of IL-2 with whole CD4, deletion forms of CD4, and TNF were expressed on the tumor cell surface, respectively. Tumor clones expressing mbIL-2 or secretory form of IL-2 were able to support the cell growth of CTLL-2, an IL-2-dependent T cell line, and the proliferation of spleen cells from 2C TCR transgenic mice that are responsive to the $p2Ca/L^d$ MHC class I complex. Expression of mbIL-2 on tumor cells reduced the tumorigenicity of tumor cells, and the mice that once rejected the live IL-2/TNF tumor clone acquired systemic immunity against wild-type MethA cells. The IL-2/TNF clone was inferior to other clones in tumor formation, and superior in the stimulation of the CD8+ T cell population in vitro. These results suggest that the IL-2/TNF clone is the best tumor vaccine, and may stimulate CD8+ T cells by direct priming. Expression of IL-2/TNF on tumor cells may serve as an effective gene therapy method to ameliorate the side effects encountered in the recombinant cytokine therapy and the conventional cytokine gene therapy using the secretory form of IL-2.

Impact of Cellular Genetic Make-up on Colorectal Cancer Cell Lines Response to Ellagic Acid: Implications of small interfering RNA

  • Yousef, Amany I;El-Masry, Omar S;Abdel Mohsen, Mohamed A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.743-748
    • /
    • 2016
  • Background: $K^-Ras$ activation is an early event in colorectal carcinogenesis and associated mutations have been reported in about 40% of colorectal cancer patients. These mutations have always been responsible for enhancing malignancy and silencing them is associated with attenuation of tumorigenicity. Among downstream effectors are the RAF/MEK/ERK and the PI3K/Akt signaling pathways. PI3K/Akt signaling leads to reduction of apoptosis, stimulated cell growth and enhanced proliferation. Ellagic acid (EA), a naturally occurring antioxidant, has recently emerged as a promising anti-cancer agent. Purpose: To evaluate the impact of cellular genetic makeup of two colon cancer cell lines with different genetic backgrounds, HCT-116 ($K^-Ras^-/p53^+$) and Caco-2 ($K^-Ras^+/p53^-$), on response to potential anti-tumour effects of EA. In addition, the influence of $K^-Ras$ silencing in HCT-116 cells was investigated. Materials and Methods: Cellular proliferation, morphology and cell cycle analysis were carried out in addition to Western blotting for detecting total Akt and p-Akt (at Thr308 and Ser473) in the presence and absence of different concentrations of EA. Cell proliferation was also assessed in cells transfected with different concentrations of $K^-Ras$ siRNA or incubated with ellagic acid following transfection. Results: The results of the present study revealed that EA exerts anti-proliferative and dose-dependent pro-apoptotic effects. Cytostatic and cytotoxic effects were also observed. p-Akt (at Thr308 and Ser473) was downregulated. Moreover, EA treatment was found to (i) reduce $K^-Ras$ protein expression; (ii) in cells transfected with siRNA and co-treated with EA, pronounced anti-proliferative effects as well as depletion of p-Akt (at Thr308) were detected. Conclusions: Cellular genetic makeup ($K^-Ras^-/p53^-$) was not likely to impose limitations on targeting EA in treatment of colon cancer. EA had a multi-disciplinary pro-apoptotic anti-proliferative approach, having inhibited Akt phosphorylation, induced cell cycle arrest and showed an anti-proliferative potential in HCT-116 cells (expressing mutant $K^-Ras$).