• 제목/요약/키워드: Tumor microenvironment (TME)

검색결과 23건 처리시간 0.024초

Recombinant Human IL-32θ Induces Polarization Into M1-like Macrophage in Human Monocytic Cells

  • Hyo-Min Park;Jae-Young Park;Na-Yeon Kim;Hyemoon Kim;Hong-Gyum Kim;Dong-Ju Son;Jin Tae Hong;Do-Young Yoon
    • IMMUNE NETWORK
    • /
    • 제24권3호
    • /
    • pp.27.1-27.14
    • /
    • 2024
  • The tumor microenvironment (TME) is formed by several immune cells. Notably, tumor-associated macrophages (TAMs) are existed in the TME that induce angiogenesis, metastasis, and proliferation of cancer cells. Recently, a point-mutated variant of IL-32θ was discovered in breast cancer tissues, which suppressed migration and proliferation through intracellular pathways. Although the relationship between cancer and IL-32 has been previously studied, the effects of IL-32θ on TAMs remain elusive. Recombinant human IL-32θ (rhIL-32θ) was generated using an Escherichia coli expression system. To induce M0 macrophage polarization, THP-1 cells were stimulated with PMA. After PMA treatment, the cells were cultured with IL-4 and IL-13, or rhIL-32θ. The mRNA level of M1 macrophage markers (IL-1β, TNFα, inducible nitric oxide synthase) were increased by rhIL-32θ in M0 macrophages. On the other hand, the M2 macrophage markers (CCL17, CCL22, TGFβ, CD206) were decreased by rhIL-32θ in M2 macrophages. rhIL-32θ induced nuclear translocation of the NF-κB via regulation of the MAPK (p38) pathway. In conclusion, point-mutated rhIL-32θ induced the polarization to M1-like macrophages through the MAPK (p38) and NF-κB (p65/p50) pathways.

Regulation of tumor-associated macrophage (TAM) differentiation by NDRG2 expression in breast cancer cells

  • Lee, Soyeon;Lee, Aram;Lim, Jihyun;Lim, Jong-Seok
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.81-86
    • /
    • 2022
  • Macrophages are a major cellular component of innate immunity and are mainly known to have phagocytic activity. In the tumor microenvironment (TME), they can be differentiated into tumor-associated macrophages (TAMs). As the most abundant immune cells in the TME, TAMs promote tumor progression by enhancing angiogenesis, suppressing T cells and increasing immunosuppressive cytokine production. N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor gene, whose expression is down-regulated in various cancers. However, the effect of NDRG2 on the differentiation of macrophages into TAMs in breast cancer remains elusive. In this study, we investigated the effect of NDRG2 expression in breast cancer cells on the differentiation of macrophages into TAMs. Compared to tumor cell-conditioned medium (TCCM) from 4T1-mock cells, TCCM from NDRG2-over-expressing 4T1 mouse breast cancer cells did not significantly change the morphology of RAW 264.7 cells. However, TCCM from 4T1-NDRG2 cells reduced the mRNA levels of TAM-related genes, including MR1, IL-10, ARG1 and iNOS, in RAW 264.7 cells. In addition, TCCM from 4T1-NDRG2 cells reduced the expression of TAM-related surface markers, such as CD206, in peritoneal macrophages (PEM). The mRNA expression of TAM-related genes, including IL-10, YM1, FIZZ1, MR1, ARG1 and iNOS, was also downregulated by TCCM from 4T1-NDRG2 cells. Remarkably, TCCM from 4T1-NDRG2 cells reduced the expression of PD-L1 and Fra-1 as well as the production of GM-CSF, IL-10 and ROS, leading to the attenuation of T cell-inhibitory activity of PEM. These data showed that compared with TCCM from 4T1-mock cells, TCCM from 4T1-NDRG2 cells suppressed the TAM differentiation and activation. Collectively, these results suggest that NDRG2 expression in breast cancer may reduce the differentiation of macrophages into TAMs in the TME.

The contribution of the nervous system in the cancer progression

  • Hongryeol Park;Chan Hee Lee
    • BMB Reports
    • /
    • 제57권4호
    • /
    • pp.167-175
    • /
    • 2024
  • Cancer progression is driven by genetic mutations, environmental factors, and intricate interactions within the tumor microenvironment (TME). The TME comprises of diverse cell types, such as cancer cells, immune cells, stromal cells, and neuronal cells. These cells mutually influence each other through various factors, including cytokines, vascular perfusion, and matrix stiffness. In the initial or developmental stage of cancer, neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor are associated with poor prognosis of various cancers by communicating with cancer cells, immune cells, and peripheral nerves within the TME. Over the past decade, research has been conducted to prevent cancer growth by controlling the activation of neurotrophic factors within tumors, exhibiting a novel attemt in cancer treatment with promising results. More recently, research focusing on controlling cancer growth through regulation of the autonomic nervous system, including the sympathetic and parasympathetic nervous systems, has gained significant attention. Sympathetic signaling predominantly promotes tumor progression, while the role of parasympathetic signaling varies among different cancer types. Neurotransmitters released from these signalings can directly or indirectly affect tumor cells or immune cells within the TME. Additionally, sensory nerve significantly promotes cancer progression. In the advanced stage of cancer, cancer-associated cachexia occurs, characterized by tissue wasting and reduced quality of life. This process involves the pathways via brainstem growth and differentiation factor 15-glial cell line-derived neurotrophic factor receptor alpha-like signaling and hypothalamic proopiomelanocortin neurons. Our review highlights the critical role of neurotrophic factors as well as central nervous system on the progression of cancer, offering promising avenues for targeted therapeutic strategies.

Effect of glucose level on chemical hypoxia- and hydrogen peroxide-induced chemokine expression in human glioblastoma cell lines

  • Jung, Yieun;Ahn, So-Hee;Park, Sang Hui;Choi, Youn-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.509-518
    • /
    • 2017
  • Glioblastoma multiforme (GBM) is the most common primary intracranial tumor in adults and has poor prognosis. The GBM-specific tumor microenvironment (TME) plays a crucial role in tumor progression, immune escape, local invasion, and metastasis of GBM. Here, we demonstrate that hypoxia, reactive oxygen species (ROS), and differential concentration of glucose influence the expression of cytokines and chemokines, such as IL-6, IL-8, and IP-10, in human glial cell lines. Treatment with cobalt chloride ($CoCl_2$) and hydrogen peroxide ($H_2O_2$) significantly increased the expression levels of IL-6, IL-8, and IP-10 in a dose-dependent manner in CRT-MG and U251-MG astroglioma cells, but not in microglia cells. However, we found strikingly different patterns of expression of cytokines and chemokines between $H_2O_2$-treated CRT-MG cells cultured in low- and high-glucose medium. These results suggest that astroglioma and microglia cells exhibit distinct patterns of cytokine and chemokine expression in response to $CoCl_2$ and $H_2O_2$ treatment, and different concentrations of glucose influence this expression under either hypoxic or oxidant-enriched conditions.

Vemurafenib Enhances NK cell Expansion and Tumor-killing Activity for Cancer Immunotherapy

  • Min Hwa Shin
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.371-375
    • /
    • 2023
  • Natural killer (NK) cells are innate immune cells and play important roles as the first immune cells to recognize and kill cancer. In patients with advanced and terminal cancer, NK cells are often inactivated, suggesting that NK cells may play important roles in cancer treatment. In particular, the proportion of NK cells among immune cells infiltrating tumor tissues is often low, which suggests that NK cells do not survive in tumor microenvironment (TME). In order to overcome these hurdles of NK cells in cancer treatment, it is critical to develop strategies that enhance the proliferation and cytolytic activity of NK cells. We applied Vemurafenib to NK cells and measured the degree of NK cell proliferation and functional activation. We obtained unexpected results of increased NK cell numbers and anti-tumor activity after Vemurafenib treatment. Although further investigation is required to uncover the detailed mechanisms, our results suggest that Vemurafenib is a promising candidate to increase the efficacy of cancer immunotherapy using NK cells.

Enhanced macrophage uptake of radiolabeled liposome triggered by ginseng extracts

  • Lee, Woonghee;Rhee, Man Hee;Yoo, Jeongsoo
    • 대한방사성의약품학회지
    • /
    • 제5권2호
    • /
    • pp.113-119
    • /
    • 2019
  • During tumor progression various immunosuppressive cells are recruited to a tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are particularly abundant in TME. Based on their function, macrophages are categorized into two phenotypes: tumoricidal M1 and tumor-supportive M2. Generally, TAMs closely resemble M2-macrophages and lead to tumor growth. However, their phenotype can be changed by immune activator from M2 to M1 and thus promote tumor immunotherapy. Ginseng extracts are well known for its anti-tumor and anti-inflammatory effects from numerous reported studies. However, the mechanism of their effects is still not clear. Recently, some studies suggested that ginseng extracts induced immune activation as well as anti-tumor activities by a repolarization of activated macrophage from M2 phenotype to M1 phenotype. But, further verification about the mechanism as to how ginseng extracts can stimulate the immune response is still needed. In this study, we investigated whether ginseng extracts can alter the phenotype from M2 macrophages to M1 macrophages in mice by using a radiolabeled liposome. And we also evaluated the potential of radiolabeled liposome as a nuclear imaging agent to monitor the transition of phenotype of TAMs. In conclusion, the ginseng extracts seem to change the phenotype of macrophages from M2 to M1 like as lipopolysaccharide (LPS) in mice.

Current Development Status of Cytokines for Cancer Immunotherapy

  • Kyoung Song
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.13-24
    • /
    • 2024
  • Cytokines influence the overall cancer immune cycle by triggering tumor antigen expression, antigen presenting, immune cell priming and activation, effector immune cell recruitment and infiltration to cancer, and cancer killing in the tumor microenvironment (TME). Therefore, cytokines have been considered potential anti-cancer immunotherapy, and cytokine-based anti-cancer therapies continue to be an active area of research and development in the field of cancer immunotherapy, with ongoing clinical trials exploring new strategies to improve efficacy and safety. In this review, we examine past and present clinical developments for major anticancer cytokines, including interleukins (IL-2, IL-15, IL-12, IL-21), interferons, TGF-beta, and GM-CSF. We identify the current status and changes in the technology platform being applied to cytokine-based immune anti-cancer therapeutics. Through this, we discuss the opportunities and challenges of cytokine-based immune anti-cancer treatments in the current immunotherapy market and suggest development directions to enhance the clinical use of cytokines as immuno-anticancer drugs in the future.

Quantitative Changes in Tumor-Associated M2 Macrophages Characterize Cholangiocarcinoma and their Association with Metastasis

  • Thanee, Malinee;Loilome, Watcharin;Techasen, Anchalee;Namwat, Nisana;Boonmars, Thidarut;Pairojkul, Chawalit;Yongvanit, Puangrat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.3043-3050
    • /
    • 2015
  • The tumor microenvironment (TME) includes numerous non-neoplastic cells such as leukocytes and fibroblasts that surround the neoplasm and influence its growth. Tumor-associated macrophages (TAMs) and cancerassociated fibroblasts (CAFs) are documented as key players in facilitating cancer appearance and progression. Alteration of the macrophage (CD68, CD163) and fibroblast (${\alpha}-SMA$, FSP-1) cells in Opisthorchis viverrini (Ov) -induced cholangiocarcinoma (CCA) was here assessed using liver tissues from an established hamster model and from 43 human cases using immunohistochemistry. We further investigated whether M2-activated TAMs influence CCA cell migration ability by wound healing assay and Western blot analysis. Macrophages and fibroblasts change their phenotypes to M2-TAMs (CD68+, CD163+) and CAFs (${\alpha}-SMA+$, FSP-1+), respectively in the early stages of carcinogenesis. Interestingly, a high density of the M2-TAMs CCA in patients is significantly associated with the presence of extrahepatic metastases (p=0.021). Similarly, CD163+ CCA cells are correlated with metastases (p=0.002), and they may be representative of an epithelial-to-mesenchymal transition (EMT) with increased metastatic activity. We further showed that M2-TAM conditioned medium can induce CCA cell migration as well as increase N-cadherin expression (mesenchymal marker). The present work revealed that significant TME changes occur at an early stage of Ov-induced carcinogenesis and that M2-TAMs are key factors contributing to CCA metastasis, possibly via EMT processes.

Expression of HYOU1 via Reciprocal Crosstalk between NSCLC Cells and HUVECs Control Cancer Progression and Chemoresistance in Tumor Spheroids

  • Lee, Minji;Song, Yeonhwa;Choi, Inhee;Lee, Su-Yeon;Kim, Sanghwa;Kim, Se-Hyuk;Kim, Jiho;Seo, Haeng Ran
    • Molecules and Cells
    • /
    • 제44권1호
    • /
    • pp.50-62
    • /
    • 2021
  • Among all cancer types, lung cancer ranks highest worldwide in terms of both incidence and mortality. The crosstalk between lung cancer cells and their tumor microenvironment (TME) has begun to emerge as the "Achilles heel" of the disease and thus constitutes an attractive target for anticancer therapy. We previously revealed that crosstalk between lung cancer cells and endothelial cells (ECs) induces chemoresistance in multicellular tumor spheroids (MCTSs). In this study, we demonstrated that factors secreted in response to crosstalk between ECs and lung cancer cells play pivotal roles in the development of chemoresistance in lung cancer spheroids. We subsequently determined that the expression of hypoxia up-regulated protein 1 (HYOU1) in lung cancer spheroids was increased by factors secreted in response to crosstalk between ECs and lung cancer cells. Direct interaction between lung cancer cells and ECs also caused an elevation in the expression of HYOU1 in MCTSs. Inhibition of HYOU1 expression not only suppressed stemness and malignancy, but also facilitated apoptosis and chemosensitivity in lung cancer MCTSs. Inhibition of HYOU1 expression also significantly increased the expression of interferon signaling components in lung cancer cells. Moreover, the activation of the PI3K/AKT/mTOR pathway was involved in the HYOU1-induced aggression of lung cancer cells. Taken together, our results identify HYOU1, which is induced in response to crosstalk between ECs and lung cancer cells within the TME, as a potential therapeutic target for combating the aggressive behavior of cancer cells.

Potential role of ANGPTL4 in cancer progression, metastasis, and metabolism: a brief review

  • Min Seok Park;Sang Eun Kim;Pureunchowon Lee;Ju-Hee Lee;Kyung Hee Jung;Soon-Sun Hong
    • BMB Reports
    • /
    • 제57권8호
    • /
    • pp.343-351
    • /
    • 2024
  • Angiopoietin-like 4 (ANGPTL4) has been identified as an adipokine involved in several non-metabolic and metabolic diseases, including angiogenesis, glucose homeostasis, and lipid metabolism. To date, the role of ANGPTL4 in cancer growth and progression, and metastasis, has been variable. Accumulating evidence suggests that proteolytic processing and posttranslational modifications of ANGPTL4 can significantly alter its function, and may contribute to the multiple and conflicting roles of ANGPTL4 in a tissue-dependent manner. With the growing interest in ANGPTL4 in cancer diagnosis and therapy, we aim to provide an up-to-date review of the implications of ANGPTL4 as a biomarker/oncogene in cancer metabolism, metastasis, and the tumor microenvironment (TME). In cancer cells, ANGPTL4 plays an important role in regulating metabolism by altering intracellular glucose, lipid, and amino acid metabolism. We also highlight the knowledge gaps and future prospect of ANGPTL4 in lymphatic metastasis and perineural invasion through various signaling pathways, underscoring its importance in cancer progression and prognosis. Through this review, a better understanding of the role of ANGPTL4 in cancer progression within the TME will provide new insights into other aspects of tumorigenesis and the potential therapeutic value of ANGPTL4.