DOI QR코드

DOI QR Code

Expression of HYOU1 via Reciprocal Crosstalk between NSCLC Cells and HUVECs Control Cancer Progression and Chemoresistance in Tumor Spheroids

  • Lee, Minji (Cancer Biology Research Laboratory, Institut Pasteur Korea) ;
  • Song, Yeonhwa (Cancer Biology Research Laboratory, Institut Pasteur Korea) ;
  • Choi, Inhee (Medicinal Chemistry, Institut Pasteur Korea) ;
  • Lee, Su-Yeon (Cancer Biology Research Laboratory, Institut Pasteur Korea) ;
  • Kim, Sanghwa (Cancer Biology Research Laboratory, Institut Pasteur Korea) ;
  • Kim, Se-Hyuk (Cancer Biology Research Laboratory, Institut Pasteur Korea) ;
  • Kim, Jiho (Screening Discovery Platform, Institut Pasteur Korea) ;
  • Seo, Haeng Ran (Cancer Biology Research Laboratory, Institut Pasteur Korea)
  • Received : 2020.11.01
  • Accepted : 2020.12.17
  • Published : 2021.01.31

Abstract

Among all cancer types, lung cancer ranks highest worldwide in terms of both incidence and mortality. The crosstalk between lung cancer cells and their tumor microenvironment (TME) has begun to emerge as the "Achilles heel" of the disease and thus constitutes an attractive target for anticancer therapy. We previously revealed that crosstalk between lung cancer cells and endothelial cells (ECs) induces chemoresistance in multicellular tumor spheroids (MCTSs). In this study, we demonstrated that factors secreted in response to crosstalk between ECs and lung cancer cells play pivotal roles in the development of chemoresistance in lung cancer spheroids. We subsequently determined that the expression of hypoxia up-regulated protein 1 (HYOU1) in lung cancer spheroids was increased by factors secreted in response to crosstalk between ECs and lung cancer cells. Direct interaction between lung cancer cells and ECs also caused an elevation in the expression of HYOU1 in MCTSs. Inhibition of HYOU1 expression not only suppressed stemness and malignancy, but also facilitated apoptosis and chemosensitivity in lung cancer MCTSs. Inhibition of HYOU1 expression also significantly increased the expression of interferon signaling components in lung cancer cells. Moreover, the activation of the PI3K/AKT/mTOR pathway was involved in the HYOU1-induced aggression of lung cancer cells. Taken together, our results identify HYOU1, which is induced in response to crosstalk between ECs and lung cancer cells within the TME, as a potential therapeutic target for combating the aggressive behavior of cancer cells.

Keywords

Acknowledgement

This work was supported by the National Research foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2017M3A9G7072864 and NRF-2017M3A9G6068246). The authors would like to thank Joo Hwan No, team head of leishmania Research laboratory, Institut Pasteur Korea, for providing of mTOR inhibitors.

References

  1. Andreasson, C., Rampelt, H., Fiaux, J., Druffel-Augustin, S., and Bukau, B. (2010). The endoplasmic reticulum Grp170 acts as a nucleotide exchange factor of Hsp70 via a mechanism similar to that of the cytosolic Hsp110. J. Biol. Chem. 285, 12445-12453. https://doi.org/10.1074/jbc.M109.096735
  2. Baik, C.S., Myall, N.J., and Wakelee, H.A. (2017). Targeting BRAF-mutant non-small cell lung cancer: from molecular profiling to rationally designed therapy. Oncologist 22, 786-796. https://doi.org/10.1634/theoncologist.2016-0458
  3. Byun, Y., Choi, Y.C., Jeong, Y., Yoon, J., and Baek, K. (2020). Long noncoding RNA expression profiling reveals upregulation of uroplakin 1A and uroplakin 1A antisense RNA 1 under hypoxic conditions in lung cancer cells. Mol. Cells
  4. Camidge, D.R., Pao, W., and Sequist, L.V. (2014). [Review]. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol. 11, 473-481. https://doi.org/10.1038/nrclinonc.2014.104
  5. Chae, H.J., Kim, S.C., Han, K.S., Chae, S.W., An, N.H., Kim, H.M., Kim, H.H., Lee, Z.H., and Kim, H.R. (2001). Hypoxia induces apoptosis by caspase activation accompanying cytochrome C release from mitochondria in MC3T3E1 osteoblasts. p38 MAPK is related in hypoxia-induced apoptosis. Immunopharmacol. Immunotoxicol. 23, 133-152.
  6. Choi, S.H., Kim, A.R., Nam, J.K., Kim, J.M., Kim, J.Y., Seo, H.R., Lee, H.J., Cho, J., and Lee, Y.J. (2018). Tumour-vasculature development via endothelialto-mesenchymal transition after radiotherapy controls CD44v6(+) cancer cell and macrophage polarization. Nat. Commun. 9, 5108. https://doi.org/10.1038/s41467-018-07470-w
  7. Dai, R.Y., Chen, S.K., Yan, D.M., Chen, R., Lui, Y.P., Duan, C.Y., Li, J., He, T., and Li, H. (2010). PI3K/Akt promotes GRP78 accumulation and inhibits endoplasmic reticulum stress-induced apoptosis in HEK293 cells. Folia Biol. (Praha) 56, 37-46. https://doi.org/10.3409/fb56_1-2.37-42
  8. De Francesco, E.M., Maggiolini, M., Tanowitz, H.B., Sotgia, F., and Lisanti, M.P. (2017). Targeting hypoxic cancer stem cells (CSCs) with Doxycycline: implications for optimizing anti-angiogenic therapy. Oncotarget 8, 56126-56142. https://doi.org/10.18632/oncotarget.18445
  9. Della Corte, C.M., Viscardi, G., Di Liello, R., Fasano, M., Martinelli, E., Troiani, T., Ciardiello, F., and Morgillo, F. (2018). Role and targeting of anaplastic lymphoma kinase in cancer. Mol. Cancer 17, 30. https://doi.org/10.1186/s12943-018-0776-2
  10. Dudley, A.C. (2012). Tumor endothelial cells. Cold Spring Harb. Perspect. Med. 2, a006536. https://doi.org/10.1101/cshperspect.a006536
  11. Ekman, S., Wynes, M.W., and Hirsch, F.R. (2012). The mTOR pathway in lung cancer and implications for therapy and biomarker analysis. J. Thorac. Oncol. 7, 947-953. https://doi.org/10.1097/JTO.0b013e31825581bd
  12. Farago, A.F., Taylor, M.S., Doebele, R.C., Zhu, V.W., Kummar, S., Spira, A.I., Boyle, T.A., Haura, E.B., Arcila, M.E., Benayed, R., et al. (2018). Clinicopathologic features of non-small-cell lung cancer harboring an NTRK gene fusion. JCO Precis. Oncol. 2018, PO.18.00037.
  13. Fu, Y. and Lee, A.S. (2006). Glucose regulated proteins in cancer progression, drug resistance and immunotherapy. Cancer Biol. Ther. 5, 741-744. https://doi.org/10.4161/cbt.5.7.2970
  14. Gao, Y.Y., Liu, B.Q., Du, Z.X., Zhang, H.Y., Niu, X.F., and Wang, H.Q. (2010). Implication of oxygen-regulated protein 150 (ORP150) in apoptosis induced by proteasome inhibitors in human thyroid cancer cells. J. Clin. Endocrinol. Metab. 95, E319-E326. https://doi.org/10.1210/jc.2010-1043
  15. Ghosh, D. and Parida, P. (2016). Interferon therapy in lung cancer: current perspectives. Curr. Cancer Ther. Rev. 12, 237-245. https://doi.org/10.2174/1573394713666170316124158
  16. Hartel, F.V., Holl, M., Arshad, M., Aslam, M., Gunduz, D., Weyand, M., Micoogullari, M., Abdallah, Y., Piper, H.M., and Noll, T. (2010). Transient hypoxia induces ERK-dependent anti-apoptotic cell survival in endothelial cells. Am. J. Physiol. Cell Physiol. 298, C1501-C1509. https://doi.org/10.1152/ajpcell.00333.2009
  17. Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., and Kunz-Schughart, L.A. (2010). Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148, 3-15. https://doi.org/10.1016/j.jbiotec.2010.01.012
  18. Hobeika, A.C., Subramaniam, P.S., and Johnson, H.M. (1997). IFNalpha induces the expression of the cyclin-dependent kinase inhibitor p21 in human prostate cancer cells. Oncogene 14, 1165-1170. https://doi.org/10.1038/sj/onc/1200939
  19. Ikeda, J., Kaneda, S., Kuwabara, K., Ogawa, S., Kobayashi, T., Matsumoto, M., Yura, T., and Yanagi, H. (1997). Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein, ORP150. Biochem. Biophys. Res. Commun. 230, 94-99. https://doi.org/10.1006/bbrc.1996.5890
  20. Joshi, A., Pande, N., Noronha, V., Patil, V., Kumar, R., Chougule, A., Trivedi, V., Janu, A., Mahajan, A., and Prabhash, K. (2019). ROS1 mutation nonsmall cell lung cancer-access to optimal treatment and outcomes. Ecancermedicalscience 13, 900. https://doi.org/10.3332/ecancer.2019.900
  21. Joyce, J.A. (2005). Therapeutic targeting of the tumor microenvironment. Cancer Cell 7, 513-520. https://doi.org/10.1016/j.ccr.2005.05.024
  22. Kim, S.H., Song, Y., and Seo, H.R. (2019). GSK-3beta regulates the endothelial-to-mesenchymal transition via reciprocal crosstalk between NSCLC cells and HUVECs in multicellular tumor spheroid models. J. Exp. Clin. Cancer Res. 38, 46. https://doi.org/10.1186/s13046-019-1050-1
  23. Laetsch, T.W., DuBois, S.G., Mascarenhas, L., Turpin, B., Federman, N., Albert, C.M., Nagasubramanian, R., Davis, J.L., Rudzinski, E., Feraco, A.M., et al. (2018). Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 19, 705-714. https://doi.org/10.1016/S1470-2045(18)30119-0
  24. Lee, A.S. (2014). Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat. Rev. Cancer 14, 263-276. https://doi.org/10.1038/nrc3701
  25. Li, X., Zhang, N.X., Ye, H.Y., Song, P.P., Chang, W., Chen, L., Wang, Z., Zhang, L., and Wang, N.N. (2019). HYOU1 promotes cell growth and metastasis via activating PI3K/AKT signaling in epithelial ovarian cancer and predicts poor prognosis. Eur. Rev. Med. Pharmacol. Sci. 23, 4126-4135.
  26. Lim, S.B., Yeo, T., Lee, W.D., Bhagat, A.A.S., Tan, S.J., Tan, D.S.W., Lim, W.T., and Lim, C.T. (2019). Addressing cellular heterogeneity in tumor and circulation for refined prognostication. Proc. Natl. Acad. Sci. U. S. A. 116, 17957-17962. https://doi.org/10.1073/pnas.1907904116
  27. Liu, L., Zhang, H., Sun, L., Gao, Y., Jin, H., Liang, S., Wang, Y., Dong, M., Shi, Y., Li, Z., et al. (2010). ERK/MAPK activation involves hypoxia-induced MGr1-Ag/37LRP expression and contributes to apoptosis resistance in gastric cancer. Int. J. Cancer 127, 820-829. https://doi.org/10.1002/ijc.25098
  28. Lynch, T.J., Bell, D.W., Sordella, R., Gurubhagavatula, S., Okimoto, R.A., Brannigan, B.W., Harris, P.L., Haserlat, S.M., Supko, J.G., Haluska, F.G., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129-2139. https://doi.org/10.1056/NEJMoa040938
  29. Makowska, A., Wahab, L., Braunschweig, T., Kapetanakis, N.I., Vokuhl, C., Denecke, B., Shen, L., Busson, P., and Kontny, U. (2018). Interferon beta induces apoptosis in nasopharyngeal carcinoma cells via the TRAILsignaling pathway. Oncotarget 9, 14228-14250. https://doi.org/10.18632/oncotarget.24479
  30. Marchetti, A., Felicioni, L., Malatesta, S., Grazia Sciarrotta, M., Guetti, L., Chella, A., Viola, P., Pullara, C., Mucilli, F., and Buttitta, F. (2011). Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J. Clin. Oncol. 29, 3574-3579. https://doi.org/10.1200/JCO.2011.35.9638
  31. Meissner, F., Scheltema, R.A., Mollenkopf, H.J., and Mann, M. (2013). Direct proteomic quantification of the secretome of activated immune cells. Science 340, 475-478. https://doi.org/10.1126/science.1232578
  32. Nair, S., Mayotte, J., Lokshin, A., and Levitt, M. (1994). Induction of squamous differentiation by interferon beta in a human non-small-cell lung cancer cell line. J. Natl. Cancer Inst. 86, 378-383. https://doi.org/10.1093/jnci/86.5.378
  33. Namba, T., Hoshino, T., Tanaka, K., Tsutsumi, S., Ishihara, T., Mima, S., Suzuki, K., Ogawa, S., and Mizushima, T. (2007). Up-regulation of 150-kDa oxygen-regulated protein by celecoxib in human gastric carcinoma cells. Mol. Pharmacol. 71, 860-870. https://doi.org/10.1124/mol.106.027698
  34. Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., et al. (2004). EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. U. S. A. 101, 13306-13311. https://doi.org/10.1073/pnas.0405220101
  35. Park, E.C. and Rongo, C. (2016). The p38 MAP kinase pathway modulates the hypoxia response and glutamate receptor trafficking in aging neurons. Elife 5, e12010. https://doi.org/10.7554/elife.12010
  36. Park, J.E., Facciponte, J., Chen, X., MacDonald, I., Repasky, E.A., Manjili, M.H., Wang, X.Y., and Subjeck, J.R. (2006). Chaperoning function of stress protein grp170, a member of the hsp70 superfamily, is responsible for its immunoadjuvant activity. Cancer Res. 66, 1161-1168. https://doi.org/10.1158/0008-5472.CAN-05-2609
  37. Pfaffenbach, K.T., Pong, M., Morgan, T.E., Wang, H., Ott, K., Zhou, B., Longo, V.D., and Lee, A.S. (2012). GRP78/BiP is a novel downstream target of IGF1 receptor mediated signaling. J. Cell. Physiol. 227, 3803-3811. https://doi.org/10.1002/jcp.24090
  38. Roskoski, R., Jr. (2020). Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. Pharmacol. Res. 152, 104609. https://doi.org/10.1016/j.phrs.2019.104609
  39. Shaw, A.T. and Solomon, B. (2011). Targeting anaplastic lymphoma kinase in lung cancer. Clin. Cancer Res. 17, 2081-2086. https://doi.org/10.1158/1078-0432.CCR-10-1591
  40. Shaw, A.T., Solomon, B.J., Chiari, R., Riely, G.J., Besse, B., Soo, R.A., Kao, S., Lin, C.C., Bauer, T.M., Clancy, J.S., et al. (2019). Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 20, 1691-1701. https://doi.org/10.1016/s1470-2045(19)30655-2
  41. Song, Y., Kim, S.H., Kim, K.M., Choi, E.K., Kim, J., and Seo, H.R. (2016). Activated hepatic stellate cells play pivotal roles in hepatocellular carcinoma cell chemoresistance and migration in multicellular tumor spheroids. Sci. Rep. 6, 36750. https://doi.org/10.1038/srep36750
  42. Song, Y., Lee, S.Y., Kim, A.R., Kim, S., Heo, J., Shum, D., Kim, S.H., Choi, I., Lee, Y.J., and Seo, H.R. (2019). Identification of radiation-induced EndMT inhibitors through cell-based phenomic screening. FEBS Open Bio 9, 82-91. https://doi.org/10.1002/2211-5463.12552
  43. Stojadinovic, A., Hooke, J.A., Shriver, C.D., Nissan, A., Kovatich, A.J., Kao, T.C., Ponniah, S., Peoples, G.E., and Moroni, M. (2007). HYOU1/Orp150 expression in breast cancer. Med. Sci. Monit. 13, BR231-BR239.
  44. Tamatani, M., Matsuyama, T., Yamaguchi, A., Mitsuda, N., Tsukamoto, Y., Taniguchi, M., Che, Y.H., Ozawa, K., Hori, O., Nishimura, H., et al. (2001). ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat. Med. 7, 317-323. https://doi.org/10.1038/85463
  45. Thon, M., Hosoi, T., Yoshii, M., and Ozawa, K. (2014). Leptin induced GRP78 expression through the PI3K-mTOR pathway in neuronal cells. Sci. Rep. 4, 7096. https://doi.org/10.1038/srep07096
  46. Tsukamoto, Y., Kuwabara, K., Hirota, S., Ikeda, J., Stern, D., Yanagi, H., Matsumoto, M., Ogawa, S., and Kitamura, Y. (1996). 150-kD oxygenregulated protein is expressed in human atherosclerotic plaques and allows mononuclear phagocytes to withstand cellular stress on exposure to hypoxia and modified low density lipoprotein. J. Clin. Invest. 98, 1930-1941. https://doi.org/10.1172/JCI118994
  47. Wang, H., Pezeshki, A.M., Yu, X., Guo, C., Subjeck, J.R., and Wang, X.Y. (2015). The endoplasmic reticulum chaperone GRP170: from immunobiology to cancer therapeutics. Front. Oncol. 4, 377. https://doi.org/10.3389/fonc.2014.00377
  48. Wang, X.Y., Kazim, L., Repasky, E.A., and Subjeck, J.R. (2003). Immunization with tumor-derived ER chaperone grp170 elicits tumor-specific CD8+ T-cell responses and reduces pulmonary metastatic disease. Int. J. Cancer 105, 226-231. https://doi.org/10.1002/ijc.11058
  49. Wu, S.D., Ma, Y.S., Fang, Y., Liu, L.L., Fu, D., and Shen, X.Z. (2012). Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat. Rev. 38, 218-225. https://doi.org/10.1016/j.ctrv.2011.06.010
  50. Yasuoka, Y., Naomoto, Y., Yamatsuji, T., Takaoka, M., Kimura, M., Uetsuka, H., Matsubara, N., Fujiwara, T., Gunduz, M., Tanaka, N., et al. (2001). Combination of tumor necrosis factor alpha and interferon alpha induces apoptotic cell death through a c-myc-dependent pathway in p53 mutant H226br non-small-cell lung cancer cell line. Exp. Cell Res. 271, 214-222. https://doi.org/10.1006/excr.2001.5383
  51. Yu, H.A., Arcila, M.E., Rekhtman, N., Sima, C.S., Zakowski, M.F., Pao, W., Kris, M.G., Miller, V.A., Ladanyi, M., and Riely, G.J. (2013a). [Research Support, N.I.H., Extramural]. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res. 19, 2240-2247. https://doi.org/10.1158/1078-0432.CCR-12-2246
  52. Yu, X., Guo, C., Yi, H., Qian, J., Fisher, P.B., Subjeck, J.R., and Wang, X.Y. (2013b). A multifunctional chimeric chaperone serves as a novel immune modulator inducing therapeutic antitumor immunity. Cancer Res. 73, 2093-2103. https://doi.org/10.1158/0008-5472.CAN-12-1740
  53. Zappa, C. and Mousa, S.A. (2016). Non-small cell lung cancer: current treatment and future advances. Transl. Lung Cancer Res. 5, 288-300. https://doi.org/10.21037/tlcr.2016.06.07
  54. Zhou, Y., Liao, Q., Li, X., Wang, H., Wei, F., Chen, J., Yang, J., Zeng, Z., Guo, X., Chen, P., et al. (2016). HYOU1, regulated by LPLUNC1, is up-regulated in nasopharyngeal carcinoma and associated with poor prognosis. J. Cancer 7, 367-376. https://doi.org/10.7150/jca.13695
  55. Zito Marino, F., Bianco, R., Accardo, M., Ronchi, A., Cozzolino, I., Morgillo, F., Rossi, G., and Franco, R. (2019). Molecular heterogeneity in lung cancer: from mechanisms of origin to clinical implications. Int. J. Med. Sci. 16, 981-989. https://doi.org/10.7150/ijms.34739

Cited by

  1. Biological Function of HYOU1 in Tumors and Other Diseases vol.14, 2021, https://doi.org/10.2147/ott.s297332
  2. Comprehensive analysis of differentially expressed long noncoding RNAs, miRNAs and mRNAs in breast cancer brain metastasis vol.13, pp.14, 2021, https://doi.org/10.2217/epi-2021-0152