• Title/Summary/Keyword: Tube-by-tube method

Search Result 1,978, Processing Time 0.027 seconds

Visualization of Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 익형 유동의 가시화)

  • Jang Ho-Keun;Kwon Jin-Kyung;Kim Byung-Ji;Kwon Soon-Bum;Kim Myung-Su
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF

Numerical investigation of plate fin performance for a compact heat exchanger (밀집형 열교환기에 사용하는 평판핀 성능에 관한 수치적 연구)

  • 유재욱;송태호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.292-300
    • /
    • 1999
  • Fin conduction not only enhances heat transfer to the ambient air but also increases tube-to-tube conduction. The latter is known to deteriorate the heat exchanger performance. Heat conduction between neighboring tubes thorough the fin is numerically investigated for accurate performance analysis of plate finned-tube heat exchangers. Governing equations for arbitrary plate fin are solved and the temperature distribution is obtained using the principle of superposition. Analysis is made using finite element method by changing the shapes of fin, the arrangements of tubes and the fin parameter mD. It is found that tube-to-tube conduction is significant when mD is small or the distance between neighboring tubes is small.

  • PDF

Optical Properties with Arc Tube Structure of Ceramic Metal Halide lamps (세라믹 메탈할라이드 램프 아크튜브 구조에 따른 광학적 특성)

  • Lee, Joo-Hoo;Yang, Jong-Kyung;Kim, Nam-Goon;Jang, Hyeok-Jin;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2244-2248
    • /
    • 2008
  • High intensity metal halide discharge lamp performance, specifically the generated luminous flux and light color content, depends critically on the arc tube design. Factors influencing the design and consequent lamp efficacy include : lamp size, geometry, arc tube composition, fill chemistry, electrode design and excitation modes. Shaping of Polycrystalline Alumina(PCA) can be realized by conventional ceramic processes. Several processes are applied nowadays. Well-known in the ceramic high pressure field for decades are the pressing and the extrusion method. Newly developed slurry and precious forming technologies give the one-body seamless tubes, which improve thickness uniformity and lighting performance. Now, we reported some optical properties with different arc tube structures of ceramic metal halide lamps.

A Study on Story propose model based on Machine Learning - Focused on YouTube

  • CHUN, Sanghun;SHIN, Seung-Jung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.224-230
    • /
    • 2021
  • YouTube is an OTT service that leads the home economy, which has emerged from the 2020 Corona Pandemic. With the growth of OTT-based individual media, creators are required to establish attractive storytelling strategies that can be preferred by viewers and elected for YouTube recommendation algorithms. In this study, we conducted a study on modeling that proposes a content storyline for creators. As the ability for Creators to create content that viewers prefer, we have presented the data literacy ability to find patterns in complex and massive data. We also studied the importance of compelling storytelling configurations that viewers prefer and can be selected for YouTube recommendation algorithms. This study is of great significance in that it deviated from the viewer-oriented recommendation system method and proposed a story suggestion model for individual creaters. As a result of incorporating this story proposal model into the production of the YouTube channel Tiger Love video, it showed a certain effectiveness. This story suggestion model is a machine learning text-based story suggestion system, excluding the application of photography or video.

A Study on the lmprovement of Accuracy in Manufacturing of Bourdon Tube (부르돈관의 가공정밀도 향상에 관한 연구)

  • Na, Ki-Hyoung;Jhang, Kyung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.31-39
    • /
    • 1996
  • In this paper, the error and its sources in manufacturing of bourdon tube pressure gage was studied, and the method to reduce such errors was discussed. In more detail, the effects of parallelism of rollers, spring back, uniformity of radius curvature and the ratio of circumferential speeds of rollers were invesrti- gated. As a reselt, we could find out that the aprallelism of roller affected to the displacement error at the free end of gage and that the amount of spring back was closely related with the ratio of circumferential speeds of rollers. The uniformity of curvature radius was determined by the distance between bending rollers and it was comparatively uniform in the range above 30 .deg. C from the both sides of tube. Also, the ratio of circumfer-ential speeds of rollers was finded out as a very important factor giving severe influence on the creep or the hysteresis of bourdon tube.

  • PDF

A Comparative Study on the Improvement of the Performance of Swivel Valve Tube Couplers (스위벨 밸브 튜브 커플러의 성능 향상을 위한 비교연구)

  • Lee, Jun-Ho;Sung, Jae-Kyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.20-27
    • /
    • 2010
  • In this study, we improved problems in the existing product by PARKER and developed the swivel valve tube couplers that can be produced by a low price in Korea. The major development was that a modulized production method was implemented by introducing a part assembling method that uses a cocking jig, and the production cost was reduced by operating the production process more simply than that of PARKER. Also, it was possible to avoid the patient registered by PARKER through the differences in the number of grooving processes and the type of o-ring. In the results of the rotation test by varying its application angle after installing it to a vehicle, it was verified that the structure proposed in this study can endure the eccentric torque and transformation pressure for various angles that have been considered as the problem in the existing fixed tube couplers. In addition, the structure was developed to adopt the problem that represents differences in the installation position of an air tank or the length and direction of hoses according to the type of vehicles produced in vehicle manufacturers. Furthermore, it was possible to verify that the product developed in this study was more excellent than that of PARKER through comparing the performance according to the Federal Motor Vehicle Safety Standard.

Generation of Nano/Submicron Particles Using an Electrically Heated Tube Furnace (전기가열 튜브로를 이용한 나노/서브마이크론 입자의 발생)

  • Ji, Jun-Ho;Pae, Yang-Il;Hwang, Jung-Ho;Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1734-1743
    • /
    • 2003
  • Aerosol generator using an electrically heated tube furnace is a stable apparatus to supply nanometer sized aerosols by using the evaporation and condensation processes. Using this method, we can generate highly concentrated polydisperse aerosols with relatively narrow size distribution. In this work, characteristics of particle size distribution, generated from a tube furnace, were experimentally investigated. We evaluated effects of several operation parameters on particle generation: temperature in the tube furnace, air flow rates through the tube, size of boat containing solid sodium chloride(NaCl). As the temperature increased, the geometric mean diameter increased and the total number concentration also increased. Dilution with air affected the size distribution of the particles due to coagulation. A smaller sized boat, which has small surface area to contact with air, brings smaller particles of narrow size distribution in comparison of that of a larger boat. Finally, we changed the electrical mobility diameter of aggregate sodium chloride particles by varying relative humidity of dilution air, and obtained non-aggregate sodium chloride particles, which are easy to generate exact monodisperse particles.

Shear behavior of concrete-encased square concrete-filled steel tube members: Experiments and strength prediction

  • Yang, Yong;Chen, Xin;Xue, Yicong;Yu, Yunlong;Zhang, Chaorui
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.431-445
    • /
    • 2021
  • This paper presents experiments and theoretical analysis on shear behavior of eight concrete-encased square concrete-filled steel tube (CECFST) specimens and three traditional reinforced concrete (RC) specimens. A total of 11 specimens with the test parameters including the shear span-to-depth ratio, steel tube size and studs arrangement were tested to explore the shear performance of CECFST specimens. The failure mode, shear capacity and displacement ductility were thoroughly evaluated. The test results indicated that all the test specimens failed in shear, and the CECFST specimens enhanced by the interior CFST core exhibited higher shear capacity and better ductility performance than that of the RC specimens. When the other parameters were the same, the larger steel tube size, the smaller shear span-to-depth ratio and the existence of studs could lead to the more satisfactory shear behavior. Then, based on the compatible truss-arch model, a set of formulas were developed to analytically predict the shear strength of the CECFST members by considering the compatibility of deformation between the truss part, arch part and the steel tube. Compared with the calculated results based on several current design specifications, the proposed formulas could get more accurate prediction.

Efficient Design of Gun-Tube Considering Inner Pressure of Bore (포강 내 압력을 고려한 효율적 포신 설계)

  • Eubin Kim;Gyubin Kim;Eun Gyo Park;Seok-Hwan Oh;Tae-Seong Roh;Jin Yeon Cho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.371-383
    • /
    • 2023
  • Artillery gun tube experiences very high pressure according to the blast of propellant charge. Therfore, it is essential to guarantee the structural safety of the gun tube. On the other hand, weight reduction of gun tube is also a crucial design factor since the agility of artillery vehicle directly leads to its survivability. In this line of thought, this work proposed an efficient design procedure which utilizes the convex combination of breech pressure and projectile base pressure time histories. Its efficiency is verified by comparing with other procedures. Other procedures utilize different computed max pressure rather than the convex combination design pressure. Additionally, a transient analysis is carried out considering the projectile movement and the corresponding pressure distribution through the newly developed ABAQUS user-subroutine. The analysis confirms the structural safety of the lightweight gun tube designed by the proposed method.

An Experimental Study on Quantitative Interpretation of Local Convective Heat Transfer for the Fin and Tube Heat Exchanger Using Lumped Capacitance Method (Lumped Capacitance 방법을 이용한 휜-관 열교환기의 정량적 국소 대류 열전달 해석을 위한 실험적 연구)

  • Kim, Ye-Yong;Kim, Gwi-Sun;Jeong, Gyu-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.205-215
    • /
    • 2001
  • An experimental study has been performed to investigate the heat transfer characteristics of fin and tube heat exchanger. The existing transient and steady methods are very difficult to apply for the measurements of heat transfer coefficients of a thin heat transfer model. In this study the lumped capacitance method was adopted. The heat transfer coefficients were measured by using the lumped capacitance method based on the liquid crystal thermography. The method is validated through impinging jet and flat plate flow experiments. The two experiments showed that the results of the lumped capacitance method with polycarbonate model showed very good agreements with those of the transient method with acryl model. The lumped capacitance method showed similar results regardless of the thickness of polycarbonate model. The method was also applied for the heat transfer coefficient measurements of a fin and tube heat exchanger. The quantitative heat transfer coefficients of the plate fin were successfully obtained. As the frontal velocity increased, the heat transfer coefficients were increased, but the color-band shape showed similar patterns regardless of frontal velocity.