• Title/Summary/Keyword: Tube fretting wear

Search Result 79, Processing Time 0.028 seconds

Fretting Characteristics of TiN Coated Zircaloy-4 Tube (TiN코팅한 지르칼로이-4튜브의 프레팅 특성)

  • 성지현;김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.269-275
    • /
    • 2000
  • The fretting wear characteristics of TiN coated Zircaloy-4 tube were investigated experimentally The fretting wear experiment was performed using TiN coated Zircaloy-4 tube as the fuel rod cladding material and uncoated Zircaloy-4 tube as one of grids. TiN coating is probably one of the most frequently and successfully used PVD coatings for the mitigation of fretting wear. In this study, TiN coating by PVD was employed for improvement of Zircaloy-4 tube fretting characteristics. The fretting tester was designed and manufactured for this experiment. TiN coated Zircaloy-4 tube was used as the moving specimen, uncoated ZircaBoy-4 tube as the stationary one. The number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. The results of this research showed that the wear volume of TiN coated Zircaloy-4 tube increased as number of cycles, normal load and slip amplitude increase but the quantity of volume was lower than the case of uncoated Zircaloy-4 tube pairs.

  • PDF

Wear Progress Model by Impact Fretting in Steam Generator Tube (충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델)

  • Lee, Jeong-Kun;Park, Chi-Yong;Kim, Tae-Ryong;Cho, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1684-1689
    • /
    • 2007
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progression model for impact-fretting wear has been investigated and proposed. The proposed wear progression model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

  • PDF

Wear Progress Model by Impact Fretting in Steam Generator Tube (충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델)

  • Park, Chi-Yong;Lee, Jeong-Kun;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.817-822
    • /
    • 2008
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progress model for impact-fretting wear has been investigated and proposed. The proposed wear progress model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

Fretting Wear Evaluation of TiAIN Coated Nuclear Fuel Rod Cladding Materials (TiAIN 코팅한 핵연료봉 피복재의 프레팅 마멸 평가)

  • Kim, Tae-Hyeong;Kim, Seok-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.88-95
    • /
    • 2002
  • Fretting of fuel rod cladding material, Zircaloy-4 Tube, in PWR nuclear power plants must be reduced and avoided. Nowadays the introduction of surface treatments or coatings is expected to bean ideal solution to fretting damage since fretting is closely related to wear, corrosion and fatigue. Therefore, in this study the fretting wear experiment was peformed using TiAIN coated Zircaloy-4 tube as the fuel rod cladding and uncoated Zircaioy-4 tube as one of grids, especially concentrating on the sliding component. Fretting wear resistance of TiAIN coated Zircaloy-4 tubes was improved compared with that of TiN coated tubes and uncoated tubes and the fretting wear mechanisms were delamination and plastic flow following by brittle fracture at lower slip amplitude but severe oxidation and spallation of oxidative layer at higher slip amplitude.

  • PDF

Wear Characteristics of Multi- span Tube Due to Turbulence Excitation (다경간 전열관의 난류 가진에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Sung, Bong-Zoo;Park, Chi-Yong;Ryu, Ki-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.904-911
    • /
    • 2006
  • A modified energy method for the fretting wear of the steam generator tube is proposed to calculate the wear-out depth between the nuclear steam generator tube and its support. Estimation of fretting-wear damage typically requires a non-linear dynamic analysis with the information of the gap velocity and the flow density around the tube. This analysis is very complex and time consuming. The basic concept of the energy method is that the volume wear rate due to the fretting-wear phenomena Is related to work rate which is time rate of the product of normal contact force and sliding distance. The wearing motion is due to dynamic interaction between vibrating tube and its support structure, such as tube support plate and anti-vibration bar. It can be assumed that the absorbed work rate would come from turbulent flow energy around the vibrating tube. This study also numerically obtains the wear-out depth with various wear topologies. A new dissection method is applied to the multi-span tubes to represent the vibrational mode. It turns out that both the secondary side density and the normal gap velocity are important parameters for the fretting-wear phenomena of the steam generator tube.

A Comparison of Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water and in Air (경수 및 공기중에서의 지르칼로이-4 튜브의 프레팅 마멸특성 비교)

  • 조광희;김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.303-309
    • /
    • 1999
  • The fretting wear behaviour of Zircaloy-4 tube used as the fuel rod cladding in PWR nuclear power plants has been investigated at the different test environment, in light water and in air as a function of slip amplitude, normal load, test duration and frequency. Zircaloy-4 tubes were used for both of oscillating and stationary specimens. A fretting wear tester was designed to be suitable for this fretting test. The wear volume and specific wear rate of Zircaloy-4 tube in water were greater than those in air under various slip amplitude. It was found that delaminate debris and surface cracks were observed at low slip amplitude and high load in water Experimental results showed that the light water accelerated the wear of Zircaloy-4 tube at low slip amplitude in fretting.

  • PDF

Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water (경수중에서 지르칼로이-4 튜브의 프레팅 마멸특성)

  • 조광희;노규철;김석삼;조성재
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.88-94
    • /
    • 1998
  • The fretting wear characteristics of Zircaloy-4 tube in light water were investigated experimentally. A fretting wear tester was designed to be suitable for this fretting test. This study was focused on the effects due to the combination of normal load, slip amplitude and number of cycles as the main factors of fretting. The results of this study showed that the wear volume increased abruptly at slip amplitude above 100 ${\mu}{\textrm}{m}$, which is defined as critical slip amplitude of Zircaloy-4 tube in light water, and that under 160 ${\mu}{\textrm}{m}$ the wear volume decreased as load increased at the same slip amplitude.

Comparison of Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water and in Air (지르칼로이-4 튜브 프레팅 마멸 특성의 환경 의존성과 마멸기구)

  • 조광희;김석삼
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.83-89
    • /
    • 1999
  • The fretting wear behaviour of Zircaloy-4 tube used as the fuel rod cladding in PWR nuclear power plants has been investigated at the different test environment, in light water and in air as a function of slip amplitude, normal load, test duration and frequency. Zircaloy-4 tubes were used for both of oscillating and stationary specimens. A fretting wear tester was designed to be suitable for this fretting test. The wear volume and specific wear rate of Zircaloy-4 tube in water was greater than those in air under various slip amplitude. Delaminates and surface cracks were observed at low slip amplitude and high load of fretting test in water, but the traces of adhesion and plowing were observed at and above 200 Um. The water accelerates the wear of Zircaloy-4 tube at lower slip amplitude in fretting.

The Effect of TiN and CrN Coatings on the Fretting Wear of Tubes against Supports in a Nuclear Steam Generators

  • Park, Dong-Shin;Park, Jung-Min;Kim, Jin-Seon;Lee, Young-Ze
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.33-36
    • /
    • 2009
  • The nuclear steam generator is composed of a bundle of tubes. The length of these tubes is very long, but their diameter is small. Fluid exists inside of the steam generator and its flow causes vibration, therefore these tubes are supported by anti-vibration bars. The wear damage due to the vibration is known as fretting wear, which should be minimized to ensure the safety of the plants. Research needs to be done about decreasing the amount of fretting wear. Hard coatings have proven to be very effective in reducing the amount of wear. The commercial coatings of TiN and CrN have excellent wear resistance and are used to protect the Inconel tube from fretting wear. The tube-on-flat type tester was used for conducting the fretting wear tests. It was found that the wear amounts of the coated tubes decreased depending on the coating thickness. CrN was found to be very effective in reducing the wear, while the wear amounts were dependent on the coating thickness in the case of TiN and a thick coating of TiN was very effective on wear resistance.

The Effect of Water Flow on Fretting Wear of the Nuclear Fuel Cladding Tubes against the Supporting Grids (핵연료 피복관과 지지격자 사이에 발생하는 프레팅 마멸에 미치는 유동의 영향)

  • Lee, Young-Ze;Kim, Jin-Seon;Park, Se-Min;Park, Dong-Shin
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.186-189
    • /
    • 2008
  • The flow induced vibration in the nuclear fuel assembly causes the fretting wear between the fuel cladding tubes and the supporting grids. The reduction in tube thickness due to the fretting wear could be related to the serious damage on nuclear fuel assembly. In this paper, the effect of the water flow on fretting wear of nuclear fuel cladding tube against supporting grid was investigated through the fretting wear tester with water spout equipment. The test results were compared with the data conducted in the stationary water. At stationary water environment the wear debris was trapped between fretting surfaces, and then the fretting wear occurred by three-body abrasion. However, in the case of water flow, the two-body abrasive wear was the dominant wear mechanism, because the wear debris was easily removed by water flow.