• Title/Summary/Keyword: Tube Process

Search Result 1,456, Processing Time 0.029 seconds

A Study on the Basic Shape of an MF Evaporator (MF증발기 기초 형상 설계에 관한 연구)

  • Park, Yong-Seok;Seong, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.39-44
    • /
    • 2019
  • The evaporator is a key driver of an air conditioning system's efficiency. In this study, we study methods of maximizing the efficiency of a Massey Ferguson (MF) evaporator by measuring how the cooling performance of different shapes vary with temperature. We varied the tube insertion depth as well as the shape of the evaporator's header and tube. When we compare header shapes of "D", "Ellipse", and "Quadrangle" types, we find that the elliptical header creates the smallest pressure loss and the highest temperature difference. Between tube shapes of "Rectangular", "Projection", and "Circular" types, the "Projection" type tube creates the most temperature difference. We also investigated the depth of tube insertion in the header and find that tube insertion of 5 - 10 mm is feasible; we selected the depths of 5, 7, and 10 mm since they corresponded to approximately 30%, 50%, and 70% of the total width of the header. The tube insertion test demonstrated that a tube insertion depth of 7 mm creates the least pressure loss and the highest temperature difference. In conclusion, the optimal evaporator design uses an "Ellipse" type header, "Projection" type tube, and a tube insertion depth between 30 and 50% of the header width.

Analysis of Forming Limit in Tube Hydroforming (튜브하이드로포밍 공정에서의 성형한계 해석)

  • 김영삼
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.134-140
    • /
    • 2000
  • Tube hydroforming is a relatively new technology compared to conventional stamping. thus there is little knowledge base that can be utilized for process and die design. To remedy this situation considerable research is now being conducted by many researchers on significant aspects of tube hydroforming technology including material selection pre-form design hydroforking process and tool design. in the tube hydroforming process we frequently experence many failure modes like wrinkling. buckling folding back and fracture under the improper forming conditions. In this paper forming limit for failure occurrence such as fracture and wrinkling is examined theoretically and the result is compared with Back's experimental result.

  • PDF

A Study of Extrusion Process for Al 3003 Condenser Tube (Al 3003 컨덴서 튜브의 직접압출 연구)

  • Bae, Jae-Ho;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1043-1050
    • /
    • 2005
  • Condenser tube is a component of the heat exchanger in automobile and air conditioning apparatus. It is generally made from the 1000 or 3000 series Al alloys that have good heat efficiency. In the case of 3000 series, these have high strength and hardness but have the disadvantage of low extruability. The development of extruding process in condenser tube with 3000 series Al alloys is studied in this paper. A study on extrusion process is performed through the 3D FE simulation in non-steady state and extrusion experimentation. Also, nano-indentation test is employed to estimate the weldability of tubes. Especially, An evaluation of the weldability using the nano-indentation is accomplished as compared with nano-hardness of welded part and the others in cross-section of tube.

Comparison of 2D and 3D Pre-bending in a Aluminum Tube Hydroforming Process (알루미늄 튜브 하이드로포밍에 대한 2D와 3D 예비 굽힘 공정의 효과 비교)

  • Kim H. Y.;Kim H. J.;Lim H. T.;Park K. C.;Park C. S.;Lee D. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.142-147
    • /
    • 2004
  • The aluminum tube hydroforming is a manufacturing process which can provide lightweight components as automotive parts. In this paper, the hydroformability of aluminium tube in different condition of bending process is presented. An investigation has been conducted on how to control the deformed shape and its effect on thinning distribution after hydroforming by using finite element simulation. Finite element simulation of tube hydroforming for automotive trailing arm is carried out to explore the effect of 2-dimensional and 3-dimensional bending.

  • PDF

Study of Energy Separation Mechanism in Vortex Tube by CFD (볼텍스 튜브의 에너지 분리 현상에 관한 수치해석 연구)

  • Choi, Won-Chul;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.92-99
    • /
    • 2008
  • The "energy separation phenomenon" through a vortex tube has been a long-standing mechanical engineering problem whose operational principle is not yet known. In order to find the operational principle of the vortex tube, CFD analysis of the flow field in the vortex tube has been carried out. It was found that the energy separation mechanism in the vortex tube consists of basically two major thermodynamic-fluid mechanical processes. One is the isentropic expansion process at the inlet nozzle, during which the gas temperature is nearly isentropically cooled. Second process is the viscous dissipation heating due to the high level of turbulence in both flow passages toward cold gas exit as well as the hot gas exit of the vortex tube. Since the amount of such a viscous heating is different between the two passages, the gas temperature at the cold exit is much lower than that at the hot exit.

A Study on the Press Forming by Rectangular Tube of Al6063 Alloys (Al6063 합금 중공각재 튜브에 의한 프레스 성형 연구)

  • Lee, Choung-Kook;Kim, Won-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.56-62
    • /
    • 2011
  • In this study, a method for the press forming of rectangular aluminium tube has been proposed. Rectangular aluminium tube has high stiff as the cold steel which can be lighter over 30% weight. It is increased every year by being recycled over 80%. Press die consists of punch, wing-die and holder for aluminium tube bending. When punch is applied with aluminium tube, holder is operated as same punch and wing-die is rotated through hinge. Stress-strain relations and springback are considered by bending angle of aluminium tube. In this study, the behaviors on tubes of square aluminium and rectangular aluminium with different thickness and area are established by the analysis of $DEFORM^{TM}$-3D program. Reducing fuel consumption is expected by using the aluminium tube deformation and it becomes the lightweight through recycling.

Characteristic Evaluation of Aluminium Filler Tube of Automotive (자동차 알루미늄 필라튜브의 특성평가)

  • Kim, Hae-Ji;Lee, Un-Ryeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.34-39
    • /
    • 2010
  • The characteristic evaluation of an aluminium filler tube for automotive is presented in this paper. The material of filler tube was used AL3003 aluminium. In characteristic evaluation of an aluminium filler, we measured the corrosion, chemical resistance, weight, leak, welding strength, exciting endurance, and the solt spray test etc.. It has been shown that the weight decreased approximately 61% in aluminum filler tube developed comparing with steel filler tube. As the characteristic evaluation on the manufactured aluminium filler it was enough satisfied to use at the automotive filler tube.

Process Analysis of Elbow-shaped Tubes using a Mandrel (맨드렐을 이용한 엘보우 성형 공정해석)

  • Oh, I.Y.;Park, S.H.;Park, J.Y.;Lee, S.H.;Lee, E.Y.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • In this study, process analysis of elbow-shaped tubes using a mandrel has been performed. To reach the final shape within the dimensional tolerance, the process analysis has been performed at various processing parameters such as tube dimensions, the curved cutting surface and the radius of curvature. The area outside the boundary of the target shape was expressed as a quantitative index to analyze the formability. The validation experiments have also been performed in order to increase the reliability of the process analysis. For the processing of elbow-shaped tubes, it is preferable to make the angle of the portion where the punch touches the tube smaller than the opposite angle. And the convex cutting surface is advantageous due to the increased contacts between the punch and the tube ends during the bending process. Elbow tube having larger radius of curvature shows higher dimensional accuracy due to the relatively uniform strain distribution.

Effect of Loading Path on the Hydroformability of a Three-layered Tube for Fabrication of a Hollow Part (중공품 성형시 삼중관의 액압성형성에 미치는 압력경로의 영향)

  • Han, S.W.;Kim, S.Y.;Joo, B.D.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.17-22
    • /
    • 2013
  • Tube hydroforming is a technology that utilizes hydraulic pressure to form a tube into desired shapes inside die cavities. Due to its advantages, such as weight reduction, increased strength, improved quality, and reduced tooling cost, single-layered tube hydroforming is widely used in industry. However in some special applications, it is necessary to produce multi-layered tubular components which have corrosion resistance, thermal resistance, conductivity, and abrasion resistance. In this study, a hollow forming process to fabricate a part from multi-layered tubes for structural purposes is proposed. To accomplish a successful hydroforming process, an analytical model that predicts optimal load path for various parameters such as tube material properties, thickness of tubes, diameter of holes and the number of holes was developed. Tubular hydroforming experiments to fabricate a hollow part were performed and the optimal loading path developed by the analytical model was successfully verified. The results show that the proposed hydroforming process can effectively produce hollow parts with multi-layered tube without defects such as wrinkling or fracture.

A Study on Demagnetization Technique of a Steel Tube using an Anhysteretic Magnetization (비히스테리자화에 의한 강관의 탈자 기법 연구)

  • Kim, Young-Hak;Yang, Chang-Seob;Shin, Kwang-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • In this study, we investigated whether the anhysteretic demagnetization process would be applicable to remove a complicated magnetization of a steel tube as a part of the experimental earlier study for a deperming of naval vessel. The magnetic tube used in this study was a 10cm-long and 1cm-diameter steel tube, and magnetized with a E-shape ferrite core to form a nonuniform magnetization in it. In the anhysteretic demagnetization process, a dc magnetic field applied along the longitudinal direction of the tube decreased from ${\pm}$3kA/m to zero-field with the step of ${\pm}$300A/m. At the same time, an ac bias magnetic field with the frequency of 60Hz and the field intensity of 300A/m was excited along the circumstantial direction of the tube. It was found that the anhysteretic process was useful to demagnetize a small-object like a steel tube from the experimental results showing the residual magnetization reduced over 90%.