• Title/Summary/Keyword: Tube Forming

Search Result 347, Processing Time 0.023 seconds

The three-dimensional temporal behavior measurement of light emitted from plasma display panel by the Scanned Point-Detecting System (Scanned Point-Detecting System을 이용한 플라즈마 디스플레이 패널에서 방출되는 광의 3차원 시간 분해 측정)

  • 최훈영;이석현;이승걸;김준엽
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.559-563
    • /
    • 2002
  • We measure the 3-dimensional temporal behavior of the light emitted from the discharge cell of a plasma display panel (PDP) by using a scanned point detecting system. The light signal detected by a PM tube is sent to the oscilloscope, and the oscilloscope is connected to a PC with GPIB. From the resultant temporal behaviors, we could analyze the discharge characteristics of the panel with a Ne-Xe (4%) mixing gas at a 400 torr pressure. The top view of the panel shows that discharge moves from the inner edge of the cathode electrode to the outer cathode electrode, forming an arc shape. The side view of the panel shows that the light is detected up to 150 $\mu\textrm{m}$ up the barrier rib. After a trigger pulse is applied, peak intensity is detected at 730 ns and peak intensity position is located at the center of the ITO electrodes.

Numerical and Experimental Study of U-Bending of SUS304L Heat Transfer Tubes (SUS304L 튜브의 U-Bending 성형공정에 관한 해석적·실험적 연구)

  • Kim, Y.B.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.405-412
    • /
    • 2014
  • As a major type of heat exchanger, the steam generator (SG) produces steam from heat energy of a nuclear power plant reactor. The steam produced by the steam generator flows into a turbine, and plays an important role in electric power generation. The heat transfer tubes in the steam generator consist of approximately 10,000 U-shaped tubes, which perform a structural role and act as thermal boundaries. The heat transfer tubes conduct the thermal energy between the primary coolant (about $320^{\circ}C$, $157kgf/cm^2$) obtained from the reactor and the secondary coolant (about $260^{\circ}C$, $60kgf/cm^2$) as part of the secondary system. Recently, the heat transfer tubes in the steam generator of the pressurized water reactor (PWR) are primarily produced from Alloy 600 and Alloy 690 seamless tubes. As a pilot study to find process parameters for the cold U-bending process using rotary draw bending, numerical and experimental investigations were conducted to produce U-shaped tubes from long straight SUS304L seamless tubes. 3D finite element simulations were run using ABAQUS Explicit with consideration of the elastic recovery. The process parameters studied were the angular speed, the operation period and the bending angle. Experimental verifications were conducted to insure the suitability of the final U-shaped configurations with respect to both ovality and wall thickness.

High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker

  • Choi, He Yun;Park, Ji Hye;Jang, Woong Bi;Ji, Seung Taek;Jung, Seok Yun;Kim, Da Yeon;Kang, Songhwa;Kim, Yeon Ju;Yun, Jisoo;Kim, Jae Ho;Baek, Sang Hong;Kwon, Sang-Mo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.363-370
    • /
    • 2016
  • Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes.

HALF-TURN ROTATION OF A POLARITY INVERSION LINE AND ASSOCIATED QUADRUPOLAR-LIKE STRUCTURE IN THE SUN

  • Magara, Tetsuya;An, Jun-Mo;Lee, Hwan-Hee;Kang, Ji-Hye
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.5
    • /
    • pp.143-150
    • /
    • 2011
  • This paper reports a characteristic motion of a polarity inversion line (PIL) formed at the solar surface, which is newly found by performing a three-dimensional magnetohydrodynamic simulation of flux emergence in the Sun. A magnetic flux tube composed of twisted field lines is assumed to emerge below the surface, forming a bipolar region with a PIL at the surface. A key finding is the successive half-turn rotation of the PIL, leading to the formation of a quadrupolar-like region at the surface and a magnetic configuration in the corona; this configuration is reminiscent of, but essentially different from the so-called inverse-polarity configuration of a filament magnetic field. We discuss a physical mechanism for producing the half-turn rotation of a PIL, which gives new insights into the magnetic structure formed via flux emergence. This presents a reasonable explanation of the configuration of a filament magnetic field suggested by observations.

Study on Reliability of Vapor Cell by Laser Packaging with Au/Au-Sn Heterojunction (Au/Au-Sn 이종접합 적용 레이저 패키징을 통한 Vapor Cell 신뢰성 연구)

  • Kwon, Jin Gu;Jeon, Yong Min;Kim, Ji Young;Lee, Eun Byeol;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.367-372
    • /
    • 2020
  • As packaging processes for atomic gyroscope vapor cells, the glass tube tip-off process, anodic bonding, and paste sealing have been widely studied. However, there are stability issues in the alkali metal which are caused by impurity elements and leakage during high-temperature processes. In this study, we investigated the applicability of a vapor cell low-temperature packaging process by depositing Au on a Pyrex cell in addition to forming an Au-Sn thin film on a cap to cover the cell, followed by laser irradiation of the Au/Au-Sn interface. The mechanism of the thin film bonding was evaluated by XRD, while the packaging reliability of an Ne gas-filled vapor cell was characterized by variation of plasma discharge behavior with time. Furthermore, we confirmed that the Rb alkaline metal inside the vapor cell showed no color change, indicating no oxidation occurred during the process.

Characteristics study of the spinning rotor gauges (점성진공계 특성연구)

  • 홍승수;신용현;임종연;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.293-297
    • /
    • 1997
  • Using trace etching method in this study, we measure the energy of argon ions generated in VEBA System which is composed of Marx Generater and Pulse Forming Line. In this system the electron beam of 240 kV, 30 kA, 60 ns is generated. Argon ions are formed through the electron beam ionization of a gas cloud injected by a fast puff valve. Thus argon ions are accelerated into vacuum drift tube by a virtual cathode and seperated with electron beam, consequently, they heat the trace etching plates made of aluminum thin films. The energy of argon ions are determined by the number of aluminum thin films penetrated by the ions. This experimental value corresponds with the theoretical value.

  • PDF

The Detection of the Steam Generator Tubing Defects in the Sludge Piles by the Eddy Current Testing (과전류탐상법(過電流探傷法)에 의한 Sludge Pile속의 결함검출(缺陷檢出))

  • Ahn, Byeong-Wan;Yim, Chang-Jae;Koo, Kil-Mo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.2
    • /
    • pp.16-26
    • /
    • 1988
  • In the in-service inspections for the steam generator tubing of the nuclear power plants by the Eddy Current Testing, the ECT signals are evaluated by their phase. If oxidized copper sludge is piled up in the secondary side, however, big sludge signals occur in large quantities which originate from copper layers forming in the sludge piles due to the pitting mechanism of the steam generator tubing by $Cu^{2+}$, and modulate the defect signals, causing the difficulty in the defect detection. In this research, sludge specimens were prepared considering the formations of the sludge signal sources and multi-frequency ECT mixing experiments by different choices of the mixing standards were performed. The results were found to be 5 to 30% of the tube wall thickness over-estimated. Experiments using the ring-type mixing standards showed the least errors of all, while those with the mixing standards nearing the sludge conditions brought larger errors as a result of the influence of the interference between the defect and the copper layers.

  • PDF

Effect of Punch Design and Flow Stress on Frictional Calibration Curve in Boss and Rib Test (보스-리브 시험 시 마찰보정선도에 대한 펀치형상 및 유동응력의 영향)

  • Yun, Y.W.;Kang, S.H.;Lee, Y.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.640-645
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitatively evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and flow stress on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the calibration curves showing the heights of the boss and rib. In addition, the effect of flow stress on the calibration curves was investigated through FE simulations. It was found that there is no effect of strength coefficient of the workpiece on the calibration curves for estimation of friction condition. On the other hand, the strain-hardening exponent of the workpiece has a significant influence on the calibration curve.

MICOWAVE PLASMA BURNER

  • Hong, Yong-Cheol;Shin, Dong-Hun;Lee, Sang-Ju;Jeon, Hyung-Won;Lho, Taihyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.95-95
    • /
    • 2010
  • An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner was composed of micvrowave transmission lines, a field applicator, discharge tube, coal and gas supply systems, and a reactor. The plasma burner is operated by injecting coal powders into a 2.45 GHz microwave plasma torch and by mixing the resultant gaseous hydrogen and carbon compounds with plasma-forming gas. We in this work used air, oxygen, steam, and their mixtures as a discharge gas or oxidant gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. The preliminary experiments were carried out by measuring the temperature profiles of flames along the radial and axial directions. We also investigated the characteristics for coal combustion and gasification by analyzing the byproducts from the exit of reactor. As expected, various byproducts such as hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. were detected. It is expected that such burner cab be applied to coal gasification, hydrocarbon reforming, industrial boiler of power plants, etc.

  • PDF

The measurement of three-dimensional temporal behavior according to the pressure in the plasma display panel (플라즈마 디스플레이 패널의 압력별 3차원 시간 분해 측정)

  • Kim, Son-Ic;Choi, Hoon-Young;Lee, Seok-Hyun;Lee, Seung-Gol
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1628-1630
    • /
    • 2002
  • In this paper, we measured 3-dimensional temporal behavior of the light emitted from discharge cell of plasma display panel(PDP) as a function of the pressure using the scanned point detecting system. The detected light signal through the PM tube is sent on the oscilloscope and oscilloscope which is connected to PC with GPIB. The whole system is controlled by a PC. From the temporal behavior results, we could analyze the discharge behavior of panel with Ne-Xe(4%) mixing gas and 300torr, 400torr, 500torr pressure. The top view of panel shows that the discharge moves from inner edge of cathode electrode to outer cathode electrode forming arc type. At the 300torr, initial emission time is very fast. The side view of panel shows that the light is detected up to $150{\mu}m$ height of barrier rib. In the panel of 300torr, emission distribution is wider than the others.

  • PDF