• 제목/요약/키워드: Tube End-forming Process

검색결과 14건 처리시간 0.024초

롤다이를 이용한 튜브 축관공정 개발 (Development of Tube End-forming Process using Roll Die)

  • 김영환
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.121-126
    • /
    • 2011
  • An accumulator placed on the refrigerant cycle pipe lines is a part to relax fluctuations of pressure within the pipe lines and stabilize refrigerants flowed into pipe. The accumulator has been mainly manufactured by the process of tube spinning using CNC(Computer Numerical Control) lathe. However, this process has the defects which are low productivity per hour and high cost. For that reason, tube end-forming using roll die is actively being developed, recently. The purpose of this study is to develope the tube end-forming process using roll die in order to manufacture the accumulator for the refrigeration pipe lines. First, the process design of tube end-forming was performed based on specification of product, and then was verified with FE analysis. Also, the effects of friction coefficient and revolution speed of roll die on forming load were investigated. The analytical results were applied in the final process design of tube end-forming. Finally, tube end-forming test was carried out to verify the validity of the FE analysis and the process design.

자동차 브레이크용 튜브의 끝단 성형 공정 설계에 관한 연구 (A Study on Design of Forming Process of Tube-end for Brake of Automobiles)

  • 제원수;예상돈;민병현
    • 한국기계가공학회지
    • /
    • 제7권4호
    • /
    • pp.155-160
    • /
    • 2008
  • End part of the brake tube formed with the shape of snake head is important for the braking of automobile in safety because it has to prevent crack, fracture and defects occurred during the forming process. Especially, the shape of tube end has influence on the ability of brake. Based on the procedure of process design, in this paper, the forming operation is done by finite element method and the design variables are analyzed by Taguchi method. Design variables such as the outer angle of tube end with the shape of snake head(A), the inner angle to make a hole at tube end with the shape of snake head(B) and the forming distance at tube end(C) are used. Optimization of design variables is performed to minimize the damage factor of the tube end occurred during the forming process. The value of damage factor of 0.327 was obtained under the optimal condition like $A=114^{\circ},\;B=80^{\circ}$ and C=5.3mm, respectively.

  • PDF

승용차용 브레이크 Tube-End의 최적설계에 관한 연구 (A Study on the Optimal Design of the Brake Tube-End for Automobiles)

  • 한규택;박정식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.53-57
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube-end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube-end is peformed by hydraulic press forming machine. In this paper, the forming processes of tube-end for automobile is analyzed and designed to make the optimal form of brake tube-end. Also, finite element analysis has been carried out using DEFORM-3D$\^$TM/ to predict the optimal shape of brake tube-end and the results obtained showed the optimal length between punch and chuck is 1.0 ∼ 1.2mm. The shape of tube-end is in good agreement with the finite element simulations and the experimental results.

  • PDF

자동차용 브레이크 튜브 관단부의 성형해석 (On the Deformation Analysis of the Brake Tube-End for Automobiles)

  • 한규택;박정식
    • 동력기계공학회지
    • /
    • 제6권3호
    • /
    • pp.31-35
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube end is performed by hydraulic press forming machine. In this paper, the forming processes of tube end for automobile is analyzed and designed to make the optimal form of brake tube end. Also, finite element analysis has been carried out using $DEFORM^{TM}% 3D to predict the optimal shape of brake tube end and the results obtained showed the optimal length between punch and chuck is $1.0{\sim}1.2mm$. The shape of tube end is in good agreement with the finite element simulations and the experimental results.

  • PDF

유동성형을 이용한 중공형 부품 제조공정 개발 (Development of Flow Forming Process for Hollow Shaped Parts from Seamless Steel Tube)

  • 권용남;김상우;김봉준;박은수;차달준
    • 소성∙가공
    • /
    • 제20권8호
    • /
    • pp.611-618
    • /
    • 2011
  • Flow forming is an incremental forming process in which rollers are used to form cylindrical parts with repeated turning of both roller and starting material. Both sheet and tube can be used as the starting material. The process is highly useful for producing hollow shaped parts from a tube, with the benefit of the average strain in the final shape being significantly lower than that from a sheet material. In the present study, the flow forming process was studied and optimized for producing a hollow shaped part from seamless steel tube by both experiment and numerical analysis. Upon considering the difficulty of forming seamless steel sheet, the thickness reduction was distributed over several tool paths. In the end, an optimum process condition was attained, and the experiment verified the simulation results.

소구경 관단 성형공정 최적화 (A Study on the Forming Process Optimization of a Small Tube)

  • 이정환;이승훈;오현옥
    • 산업경영시스템학회지
    • /
    • 제33권3호
    • /
    • pp.71-78
    • /
    • 2010
  • The end shape of tube for automobile power steering system has influence on the ability of performance. In this case study, we attempted to optimize the forming process of a small tube using Taguchi experimental design methodology. A preliminary experiment was conducted and four main control factors were selected. The experiment was set up as an $L_9(3^4)$ orthogonal array, and determined the optimal levels of the four factors through the analysis of the experimental results. As a result, the performance characteristic(close adhesion power) of the product was improved about 36%. In addition, the process capability index $C_{pk}$ is enhanced from 0.94 to 6.85.

상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구 (A Study on the Process of Tube End Spining by the Upper bound Method and Finite Element Method)

  • 김진형;홍성인;이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 춘계학술대회논문집
    • /
    • pp.23-30
    • /
    • 1996
  • The purpose of this study was to investigate changes in thewall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables were : Workpiece material, original wall thickness of tube, die angle, friction, and diameter reduction. The results indicated that of these five variables were a factor in wall-thickness increase and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses whcih are similar to acturla forming process. Optimized process variables which are obtained by upper bound method are used in ABAQUS pre-model . In ABAQUS analysis, the stress and the strain contours which are considered to be heat generation occured by the friction during forming process are observed.

  • PDF

Side Member 관재 하이드로포밍 성형해석 (Forming Analysis on the Tubular Hydroforming of Side Member)

  • 박재헌;최이천;오영근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.54-58
    • /
    • 2001
  • In recent years, hydroforming technology has been one of the most important technology in automotive industry in the points of weight saving, cost reduction and qualify improvement. However, compared with traditional metal forming technology, hydroforming has much fewer information in experience and empirical knowledge. But we don't have my sufficient time and money to produce hydroforming products using real blank directly Therefore Simulation is essential in hydrofonrung technology development. In this paper, we simulate the side member as the tubular hydroforming technology. The manufacturing process of side member' consists of pre_bending, pre_forming, and hydroforming of a thin tube. Variables such as internal pressure, end feeding, and tool geometry are optimized to improve the forming safety. And we simulate side member according to several lubricant conditions. from those simulations, we find that strain distributions can be reduced well by internal pressure and end feeding control, and lubrication is the most important thing in hydroforming process.

  • PDF

나선형 증기 발생기 튜브의 정밀성형을 위한 스프링백 제어 연구 (A Study on the Control of Spring Back for the Precision Forming of the Steam Generator Helical Tube)

  • 서영성;김용완;김종인
    • 소성∙가공
    • /
    • 제11권3호
    • /
    • pp.238-245
    • /
    • 2002
  • The spring back taking place after the coiling process of steam generator tube leads to the dimensional inaccuracy. In order to reduce the spring back, tension force was applied to the one end of the tube during forming. In this work, parametric study using FEM was performed to find the appropriate magnitude of tension force. The force that induces minimum spring back was found by simultaneously taking account if spring back amount, cross-sectional ovality, and thickness of the tube wall after deformation. In addition, stress relieving by heat treatment was also simulated as an alternative to the former method. The latter was found to be more effective under the given constraints.