• 제목/요약/키워드: Tube Drive Shaft

검색결과 8건 처리시간 0.025초

로터리 스웨이징 공정으로 성형된 자동차 중공 드라이브샤프트의 성능특성 연구 (Performance Characteristics of the Automotive TDS (Tube Drive Shaft) by the Rotary Swaging Process)

  • 임성주;이낙규;나경환;이지환
    • 소성∙가공
    • /
    • 제12권7호
    • /
    • pp.654-661
    • /
    • 2003
  • A monobloc TDS(Tube Drive Shaft) has been developed by using the rotary swaging process which is one of the incremental forming process. In order to estimate the developed TDS performance characteristics such as natural frequency, strength, stiffness and mass, finite element analysis has been carried out using commercial software, MSC/NASTRAN. The calculated performance characteristics have been compared with analysis results of SDS(Solid Drive Shaft) to know how much improve the performance characteristics. Also the sensitivity analyses of design parameters for the tube length and diameter have been performed. From the analysis results, it was found that the TDS allowed for a high frequency and could be designed to be much lighter than SDS. This advantage can give possibility to tune the NVH (Noise-Vibration-Harshness) characteristics.

바이모달 트램 구동축 서브프레임에 적용된 용접 사각관의 굽힘 특성 평가 (An Evaluation of Bending Performance of Welded Square Tube Structures for Drive Shaft Sub Frame of BIMODAL Tram)

  • 고희영;신광복;이종화;김한수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2200-2206
    • /
    • 2008
  • This paper describes the results of experiments on the bending behavior of welded square tube structures for drive shaft sub frame of BIMODAL Tram. The used specimens to test were two different type made of ATOS60 and ST52-3. The square tube made of ST52-3 is the non-welded structure, while the square tube made of ATOS60 is the welded structure. The welded square tube made of ATOS60 will be applied for drive shaft sub frame of BIMODAL Tram. This welded square tube could reduce the manufacturing cost in comparison of non-welded square tube. The results showed that the bending performance of welded square tube made of ATOS60 was proven, and the bending behavior was in an good agreement with that of nonlinear finite element analysis.

  • PDF

후륜 구동 자동차의 슬립 인 튜브 프로펠러 샤프트의 진동특성에 관한 연구 (A Study on the Vibration Characteristic of Slip-In Tube Propeller Shaft in FR Automobile)

  • 이혜진;황재혁;김승수;변정무;김응주;차달준;강상욱;변원용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.309-313
    • /
    • 2006
  • Many researchers have studied on the lightness of automobile. These researches are such as a body shell, sub frame, fuel tank, engine etc. The transmission Part is a magnitude one in the aspect of weight. A drive shaft (propeller shaft) transmits the engine power to rear differential gear assembly. It is used in the compact car that is a single drive shaft. But in the case of long body cars such as SUV (Sports Utility Vehicle), truck and large vehicle, two or three divided drive shaft are used to prevent the vibration damage from a drive shaft that has been taken high torsion and rotation. This multi-divided drive shaft structure is so heavy because it is assembled by yoke, center bearing and solid spline axis. When the rear axle move up and down, the spline shaft adjust the variation of a length between the transmission and rear axle gearbox. In this paper, it is studied in the experimental method that is a bending vibration characteristic of slip in tube shaped propeller shaft. This type propeller shaft is developed to combine the spline axis with drive shaft and can be light in weight of transmission part.

  • PDF

자동차용 중공드라이브 샤프트의 성형공정 연구 (Forming Process of the Automotive TDS (Tube Drive Shaft) by the Rotary Swaging Process)

  • 임성주;이낙규;오태원;이지환
    • 소성∙가공
    • /
    • 제12권6호
    • /
    • pp.558-565
    • /
    • 2003
  • Rotary swaging is one of the incremental forming process which is a chipless metal forming process for the reduction of cross-sections of bars, tubes and wires. In the present work, the rotary swaging machine and dies were designed to investigate the formability of TDS(Tube Drive Shaft) used in automotive industry. The process variables such as the speed of forming, the shape of the formed materials and the reduction of area were also estimated to study experimental analyses of rotary swaging process using the materials of 34Mn5 and S45C. From experimental results, it was found that the process variables affected the quality of TDS in terms of hardness, the precision of products and the surface roughness. The hardness after swaging approved to be Increased with the increase in the reduction of diameter. And it was found that the grain size became smaller and the elongated grains were formed in the axis direction.

자동차용 복합재료 드라이브샤프트 설계 및 성형 연구 (Design and Manufacturing of Composite Drive Shaft for Automobiles)

  • 김태욱;이상관;전의진;김완두;이대길
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.109-117
    • /
    • 1993
  • A carbon/epoxy composite drive shaft used for the power transmission of the automobiles with steel joints. Compared with the metallic drive shaft, the composite one has the weight saving of 50% with equivalent torsional strength and fatigue characteristics. In this study, the filament winding technique for the composite tube and composite/metal joining technique are estabilished. The performance test of the drive shaft is carried out. The optimal condition of the surface roughness of the steel adherend was $1.5{{\mu}m}$ to $2.5{{\mu}m}$, and the optimal condition of the bonding thickness was 0.15mm. Maximum torque and torsional stiffness of the composite drive shaft manufactured by filament winding process were found to be $210kg{\cdot}m$ and $18.5kg{\cdot}m/deg$, respectively.

  • PDF

4륜구동 SUV 차량용 구동축 경량화를 위한 CFRP 튜브 개발 (Development of CFRP Tubes for the Light-Weight Propeller Shaft of 4WD SUV Vehicles)

  • 나혜중;천진성;조규상
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.32-38
    • /
    • 2018
  • In this study, the one-piece propeller shaft composed of carbon/epoxy was designed and manufactured for 4 wheel drive automobiles that can bear the target torsional torque performance of 3.5kN.m. For the CFRP tube, braiding machine was used to weaving carbon fiber and it was formed the braided yarns with the braid angle ${\pm}45^{\circ}$ and axial yarns to improve strength of the lengthwise direction. The final CFRP tube of propeller shaft was evaluated through the torsional torque test. The CFRP propeller shaft satisfied requirement of the target torsional maximum torque of 3.5kN.m. Also, it was found that the one-piece composite propeller shaft with CFRP tube had 30% weight saving effect compared with a two-piece steel propeller shaft.

로터리 스웨이징 공정의 점진성형에 의한 중공 드라이브샤프트의 진동모드 및 내구특성 (Vibration Mode and Durability Characteristics of Automotive IDS using Rotary Swaging Process for Incremental Forming)

  • 임성주;이낙규;이지환
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.127-133
    • /
    • 2005
  • Rotary swaging is one of the incremental forming process which is a chipless process using the reduction of cross-sections of bars, tubes and wires. The TDS(Tube Drive Shaft) of monobloc used in automotive has been developed by the rotary swaging process. The mechanical characteristics of swaged parts such as the hardness, thickness and roughness are also estimated to conduct experimental analyses of rotary swaging process with the materials of 34Mn5 Furthermore the change in the vibration mode of TDS due to design parameters, which are the tube length, diameter and thickness, has been investigated and analysed. The weight of the TDS product is smaller by about $12.8\%$ than that of SDS with the same performance. It could be evidently found that the TDS is designed to be much lighter than SDS (Solid Drive Shaft). This advantage might give some possibility to improve the NVH (Noise-Vibration-Harshness) characteristics. A maximum torque and a total number of torsional repetitions for the TDS is checked and measured to know the torsional intensity and fatigue strength through the static torsion test and torsional durability test, respectively. A total number of the torsional repetitions up to the fracture for the TDS is greater than 250,000 times.

2축 분할식 차량 구동라인의 굽힘진동 저감을 위한 동흡진기 최적설계 (Optimum Design of Dynamic Vibration Absorber for Reducing Bending Vibrations of Two-Piece Vehicle Drive Line)

  • 이상범;유영선
    • 한국음향학회지
    • /
    • 제29권2호
    • /
    • pp.118-124
    • /
    • 2010
  • 본 논문에서는 차량 구동라인의 굽힘 진동을 저감시키기 위해 사용되는 동흡진기의 설계 파라미터에 대한 최적설계를 수행하였다. 정확한 동적 응답특성을 얻기 위해 구동라인을 구성하는 추진축의 진동해석으로부터 추출된 유연성 데이터를 구동라인 동역학 모델에 적용하여 유연체 구동라인을 만들었다. 동흡진기의 내부 튜브 질량, 고무 강성계수 및 고무 감쇠계수를 최적화를 위한 설계 파라미터로 선택하였다. 구동라인의 수직 가속도를 최소화시키기 위해 중심합성 실험계획법의 3-요인, 2-수준 실험을 15회 수행하여 목적함수에 대한 2차 회귀방정식을 만들었으며, 최적화 프로그램을 이용하여 동흡진기 설계 파라미터들을 결정하였다. 최적화된 동흡진기를 장착한 차량 모델은 초기 모델에 비해 구동라인의 수직 가속도 피크값을 17.1% 감소시켰다.