• Title/Summary/Keyword: Tube Angle

Search Result 466, Processing Time 0.024 seconds

A Study on the Tube Sinking Process of the Industrial Boiler Tube (산업용 보일러 Tube의 Sinking 공정에 관한 연구)

  • Kwon, I.K.;Kang, K.P.;Lee, W.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.94-99
    • /
    • 2001
  • Theoretical analysis using finite element method are peformed in order to clarify the formation of the flare-shape defect for multi-step tube sinking process. The parameters of concern were the friction between the tube and the die, and geometrical parameters, such as the die inclination angle, the diameters of the die entrance and exit, and the curvature at the corner of the die exit. The effect of the curvature at the comer of the die exit is dominant for determining the flare-shape defect. In order to minimize the flare-shape defect the curvature at the corner of the die exit should be increased up to a certain level(120mm). Using three-step tube sinking die sets which have different curvatures at the comer of the die exit, several numbers of tests were performed and its results are compared with that of theoretical analysis.

  • PDF

Analysis of Deformation of Brass Tube Drawn By Various Methods (인발 방법에 따른 황동관의 변형 해석)

  • ;Oh Kyu Hwan;Lee Dong Nyung
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.76-85
    • /
    • 1995
  • The general equation of homogeneous strin for tube drawing has been derived. This can be applied to the general tube drawing method for non-zero plug angle. Also, the derived equation can represent Blazynski's equations for the sinking and tube drawing with a constant plug diameter. The general tube drawing was divided into two steps, sinking and contact drawing zones. The derived equation can calculate the homogeneous strains of the two steps. The various tube drawing methods such as fixed tapered plug, fixed mandrel, fixed back tapered plug, and floating plug have been analysed by the equation and finite element analysis. From the FEM calculations, the total strains and drawing stresses are obtained and consequently the redundancy factor of various drawing methods was analysed. The fixed back tapered plug method showed the largest redundancy factor and the floating plug method had the largest drawing stress.

  • PDF

The characteristics of bending collapse of aluminum/GFRP hybrid tube (알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성)

  • 송민철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

A Study on the Press Forming by Rectangular Tube of Al6063 Alloys (Al6063 합금 중공각재 튜브에 의한 프레스 성형 연구)

  • Lee, Choung-Kook;Kim, Won-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.56-62
    • /
    • 2011
  • In this study, a method for the press forming of rectangular aluminium tube has been proposed. Rectangular aluminium tube has high stiff as the cold steel which can be lighter over 30% weight. It is increased every year by being recycled over 80%. Press die consists of punch, wing-die and holder for aluminium tube bending. When punch is applied with aluminium tube, holder is operated as same punch and wing-die is rotated through hinge. Stress-strain relations and springback are considered by bending angle of aluminium tube. In this study, the behaviors on tubes of square aluminium and rectangular aluminium with different thickness and area are established by the analysis of $DEFORM^{TM}$-3D program. Reducing fuel consumption is expected by using the aluminium tube deformation and it becomes the lightweight through recycling.

Measurements of Flow Meniscus Movement in a Micro Capillary Tube (마이크로 원형 모세관에서 계면 이동 현상의 측정)

  • Lee, Sukjong;Sung, Jaeyong;Lee, Myeong Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a high-speed imaging and an image processing technique have been applied to detect the position of a meniscus as a function of time in the micro capillary flows. Two fluids with low and high viscosities, ethylene glycol and glycerin, were dropped into the entrance well of a circular capillary tube. The filling times of the meniscus in both cases of ethylene glycol and glycerin were compared with the theoretical models - Washburn model and its modified model based on Newman's dynamic contact angle equation. To evaluate the model coefficients of Newman's dynamic contact angle, time-varying contact angles under the capillary flows were measured using an image processing technique. By considering the dynamic contact angle, the estimated filling time from the modified Washburn model agrees well with the experimental data. Especially, for the lower-viscosity fluid, the consideration of dynamic contact angle is more significant than for the higher-viscosity fluid.

Characteristics of flow for various rotating angle in cylindrical tube (원관내 밸브 디스크 회전각의 변화에 따른 유동특성)

  • Shim Joseph;Huh Hyeung-Suk;Byun Dong Gun;Suh Yong-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.75-78
    • /
    • 2002
  • In this paper, flow on the rear region of a butterfly valve was analysed by using numerical and experimental methods. The butterfly-valve disk angle is changed as 0-60 degree and the uniform flow velocity was fixed In this experiment. It was shown that the numerical results are similar to the experimental results. General discussions are given to the flow-pattern change upon the disk angle of the valve.

  • PDF

Experimental Study for the Aerodynamic Characteristics of Slanted-Base Ogive Cylinder (기저면이 경사진 Ogive실린더의 공력특성에 관한 실험적 연구)

  • 맹주성;양시영;오세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2664-2674
    • /
    • 1994
  • Drag, lift, and pitching moment measurements have been made on a range of slanted-base ogive cylinders, using the KANOMAX wind tunnel and balance system. Test Reynolds numbers(based on model maximum diameter) varied from $0.54{\times}10^{5}{\;}to{\;}1.56{\times}10^{5}$. Crossflow velocity maesurement was conducted by 5-hole pitot tube at $Re_{D}=1.46{\times}10^{5}$. For two base angle $({\theta}=30$ and 45 deg.), aerodynamic forces and moment were measured with increasing angle of attack(0~30 deg.). Two types of wake flow were observed, a quasisymetric turbulent closure or a longitudinal vortex flow. Aerodynamic characteristics differ dramatically between the two wake types. It was found that the drag, lift and pitching moment coefficients increased with increasing angle of attack.

The effect of inclined ribbed tubes on heat transfer and friction loss (Ribbed 管의 管傾斜角이 熱傳達에 미치는 影響)

  • 박성찬;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.105-109
    • /
    • 1987
  • Artificial roughness as a means of improving heat transfer gains more interest, especially for application to various heat exchanger. This study present experimental information for single-phase free and force convection heat transfer in a circular tube containing a internal spiral ribs. To examine the effect of inclined angle of tube, it was varied from 0 deg to 90 deg (0.deg., 22.5.deg., 45.deg., 90.deg.) with horizontal. Length of tube is 1.6m, and width, height and helix angle of rib are 4.2mm, 1.5mm, and 60 deg respectively. Water was used as a working fluid and test piece was heated with a constant heat flux by electric heater. Experiments have been performed with the range of modified Grashof number from 2 * 10$^{6}$ to 15 * 10$^{6}$ for free convection and with the range of Reynolds number from 3,000 to 40,000 for forced convection. Since the increase in heat transfer coefficients influence directly to the friction coefficient of the tube, the changes of the friction factors are also presented for several different cases considered in this investigation.

The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe

  • Kim, Jong-Soo;Bui, Ngoc-Hung;Jung, Hyun-Seok;Lee, Wook-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1533-1542
    • /
    • 2003
  • In the present study, the characteristics of pressure oscillation and heat transfer performance in an oscillating capillary tube heat pipe were experimentally investigated with respect to the heat flux, the charging ratio of working fluid, and the inclination angle to the horizontal orientation. The experimental results showed that the frequency of pressure oscillation was between 0.1 Hz and 1.5 Hz at the charging ratio of 40 vol.%. The saturation pressure of working fluid in the oscillating capillary tube heat pipe increased as the heat flux was increased. Also, as the charging ratio of working fluid was increased, the amplitude of pressure oscillation increased. When the pressure waves were symmetric sinusoidal waves at the charging ratios of 40 vol.% and 60 vol.%, the heat transfer performance was improved. At the charging ratios of 20 vol.% and 80 vol.%, the waveforms of pressure oscillation were more complicated, and the heat transfer performance reduced. At the charging ratio of 40. vol.%, the heat transfer performance of the OCHP was at the best when the inclination angle was 90$^{\circ}$ the pressure wave was a sinusoidal waveform, the pressure difference was at the least, the oscillation amplitude was at the least, and the frequency of pressure oscillation was the highest.