• Title/Summary/Keyword: Trusted computing

Search Result 93, Processing Time 0.023 seconds

Visual Monitoring System of Multi-Hosts Behavior for Trustworthiness with Mobile Cloud

  • Song, Eun-Ha;Kim, Hyun-Woo;Jeong, Young-Sik
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.347-358
    • /
    • 2012
  • Recently, security researches have been processed on the method to cover a broader range of hacking attacks at the low level in the perspective of hardware. This system security applies not only to individuals' computer systems but also to cloud environments. "Cloud" concerns operations on the web. Therefore it is exposed to a lot of risks and the security of its spaces where data is stored is vulnerable. Accordingly, in order to reduce threat factors to security, the TCG proposed a highly reliable platform based on a semiconductor-chip, the TPM. However, there have been no technologies up to date that enables a real-time visual monitoring of the security status of a PC that is operated based on the TPM. And the TPB has provided the function in a visual method to monitor system status and resources only for the system behavior of a single host. Therefore, this paper will propose a m-TMS (Mobile Trusted Monitoring System) that monitors the trusted state of a computing environment in which a TPM chip-based TPB is mounted and the current status of its system resources in a mobile device environment resulting from the development of network service technology. The m-TMS is provided to users so that system resources of CPU, RAM, and process, which are the monitoring objects in a computer system, may be monitored. Moreover, converting and detouring single entities like a PC or target addresses, which are attack pattern methods that pose a threat to the computer system security, are combined. The branch instruction trace function is monitored using a BiT Profiling tool through which processes attacked or those suspected of being attacked may be traced, thereby enabling users to actively respond.

An Off-line Dictionary Attack on Command Authorization in TPM and its Countermeasure (TPM에서 명령어 인가에 대한 오프라인 사전 공격과 대응책)

  • Oh, Doo-Hwan;Choi, Doo-Sik;Kim, Ki-Hyun;Ha, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1876-1883
    • /
    • 2011
  • The TPM is a hardware chip for making a trusted environment on computing system. We previously need a command authorization process to use principal TPM commands. The command authorization is used to verify an user who knows a usage secret to TPM chip. Since the user uses a simple password to compute usage secret, an attacker can retrieve the password by evasdropping messages between user and TPM chip and applying off-line dictionary attack. In this paper, we simulate the off-line dictionary attack in real PC environment adopted a TPM chip and propose a novel countermeasure to defeat this attack. Our proposed method is very efficient due to its simplicity and adaptability without any modification of TPM command structures.

Improving Efficiency of Encrypted Data Deduplication with SGX (SGX를 활용한 암호화된 데이터 중복제거의 효율성 개선)

  • Koo, Dongyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.8
    • /
    • pp.259-268
    • /
    • 2022
  • With prosperous usage of cloud services to improve management efficiency due to the explosive increase in data volume, various cryptographic techniques are being applied in order to preserve data privacy. In spite of the vast computing resources of cloud systems, decrease in storage efficiency caused by redundancy of data outsourced from multiple users acts as a factor that significantly reduces service efficiency. Among several approaches on privacy-preserving data deduplication over encrypted data, in this paper, the research results for improving efficiency of encrypted data deduplication using trusted execution environment (TEE) published in the recent USENIX ATC are analysed in terms of security and efficiency of the participating entities. We present a way to improve the stability of a key-managing server by integrating it with individual clients, resulting in secure deduplication without independent key servers. The experimental results show that the communication efficiency of the proposed approach can be improved by about 30% with the effect of a distributed key server while providing robust security guarantees as the same level of the previous research.

A study on Development of Certification Schemes for Cloud Security (국내 클라우드 보안 인증스킴 개발에 관한 연구)

  • Jung, Jin-Woo;Kim, Jungduk;Song, Myeong-Gyun;Jin, Chul-Gu
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.43-49
    • /
    • 2015
  • As the cloud computing law was passed in March, 2015, many private companies and public organizations give consideration to introduce cloud computing services. However, most of them are still concerned about the security issues in cloud computing services. To solve the problem, a certification system of cloud security is necessary as an enabler for adoption of the trusted cloud services. There have been a number of studies about certification systems for cloud security, but only few studies exist about certification scheme of cloud security. Therefore, in this study, foreign certification systems for cloud security are analyzed to draw requirements for developing a domestic certification scheme for cloud security. Based on the result of analysis, this study proposes the three certification schemes of cloud security, which have been reviewed by the focus group interview method to draw advantages and disadvantages of each scheme.

Key Management for Secure Internet of Things(IoT) Data in Cloud Computing (클라우드 컴퓨팅에서 안전한 사물인터넷 데이터를 위한 키 관리)

  • Sung, Soon-hwa
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.353-360
    • /
    • 2017
  • The Internet of Things(IoT) security has more need than a technical problem as it needs series of regulations and faultless security system for common purposes. So, this study proposes an efficient key management in order that can be trusted IoT data in cloud computing. In contrast with a key distribution center of existing sensor networks, the proposed a federation key management of cloud proxy key server is not central point of administration and enables an active key recovery and update. The proposed key management is not a method of predetermined secret keys but sharing key information of a cloud proxy key server in autonomous cloud, which can reduce key generation and space complexity. In addition, In contrast with previous IoT key researches, a federation key of cloud proxy key server provides an extraction ability from meaningful information while moving data.

An Assurance Mechanism of Intrusion Data for Making Digital Evidence in Digital Computing Environment (디지털 컴퓨팅 환경의 디지털 증거화를 위한 침해 데이터보증 메커니즘)

  • Jang, Eun-Gyeom
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.129-141
    • /
    • 2010
  • In digital computing environment, for the mal functions in appliances and system errors, the unaccepted intrusion should be occurred. The evidence collecting technology uses the system which was damaged by intruders and that system is used as evidence materials in the court of justice. However the collected evidences are easily modified and damaged in the gathering evidence process, the evidence analysis process and in the court. That’s why we have to prove the evidence’s integrity to be valuably used in the court. In this paper, we propose a mechanism for securing the reliability and the integrity of digital evidence that can properly support the Computer Forensics. The proposed mechanism shares and manages the digital evidence through mutual authenticating the damaged system, evidence collecting system, evidence managing system and the court(TTP: Trusted Third Party) and provides a secure access control model to establish the secure evidence management policy which assures that the collected evidence has the corresponded legal effect.

Outsourcing decryption algorithm of Verifiable transformed ciphertext for data sharing

  • Guangwei Xu;Chen Wang;Shan Li;Xiujin Shi;Xin Luo;Yanglan Gan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.998-1019
    • /
    • 2024
  • Mobile cloud computing is a very attractive service paradigm that outsources users' data computing and storage from mobile devices to cloud data centers. To protect data privacy, users often encrypt their data to ensure data sharing securely before data outsourcing. However, the bilinear and power operations involved in the encryption and decryption computation make it impossible for mobile devices with weak computational power and network transmission capability to correctly obtain decryption results. To this end, this paper proposes an outsourcing decryption algorithm of verifiable transformed ciphertext. First, the algorithm uses the key blinding technique to divide the user's private key into two parts, i.e., the authorization key and the decryption secret key. Then, the cloud data center performs the outsourcing decryption operation of the encrypted data to achieve partial decryption of the encrypted data after obtaining the authorization key and the user's outsourced decryption request. The verifiable random function is used to prevent the semi-trusted cloud data center from not performing the outsourcing decryption operation as required so that the verifiability of the outsourcing decryption is satisfied. Finally, the algorithm uses the authorization period to control the final decryption of the authorized user. Theoretical and experimental analyses show that the proposed algorithm reduces the computational overhead of ciphertext decryption while ensuring the verifiability of outsourcing decryption.

Vulnerability Analysis of Insider Attack on TPM Command Authorization Protocol and Its Countermeasure (TPM 명령어 인가 프로토콜에 대한 내부자 공격 취약점 분석 및 대응책)

  • Oh, Doo-Hwan;Choi, Doo-Sik;Kim, Ki-Hyun;Oh, Soo-Hyun;Ha, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1356-1366
    • /
    • 2011
  • The TPM(Trusted Platform Module) is a hardware chip to support a trusted computing environment. A rightful user needs a command authorization process in order to use principal TPM commands. To get command authorization from TPM chip, the user should perform the OIAP(Object-Independent Authorization Protocol) or OSAP(Object-Specific Authorization Protocol). Recently, Chen and Ryan alerted the vulnerability of insider attack on TPM command authorization protocol in multi-user environment and presented a countermeasure protocol SKAP(Session Key Authorization Protocol). In this paper, we simulated the possibility of insider attack on OSAP authorization protocol in real PC environment adopted a TPM chip. Furthermore, we proposed a novel countermeasure to defeat this insider attack and improve SKAP's disadvantages such as change of command suructures and need of symmetric key encryption algorithm. Our proposed protocol can prevent from insider attack by modifying of only OSAP command structure and adding of RSA encryption on user and decryption on TPM.

Query with SUM Aggregate Function on Encrypted Floating-Point Numbers in Cloud

  • Zhu, Taipeng;Zou, Xianxia;Pan, Jiuhui
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.573-589
    • /
    • 2017
  • Cloud computing is an attractive solution that can provide low cost storage and powerful processing capabilities for government agencies or enterprises of small and medium size. Yet the confidentiality of information should be considered by any organization migrating to cloud, which makes the research on relational database system based on encryption schemes to preserve the integrity and confidentiality of data in cloud be an interesting subject. So far there have been various solutions for realizing SQL queries on encrypted data in cloud without decryption in advance, where generally homomorphic encryption algorithm is applied to support queries with aggregate functions or numerical computation. But the existing homomorphic encryption algorithms cannot encrypt floating-point numbers. So in this paper, we present a mechanism to enable the trusted party to encrypt the floating-points by homomorphic encryption algorithm and partial trusty server to perform summation on their ciphertexts without revealing the data itself. In the first step, we encode floating-point numbers to hide the decimal points and the positive or negative signs. Then, the codes of floating-point numbers are encrypted by homomorphic encryption algorithm and stored as sequences in cloud. Finally, we use the data structure of DoubleListTree to implement the aggregate function of SUM and later do some extra processes to accomplish the summation.

The re-projections under 7 age on Korean registered population and a comparison with the reported population statistical data (주민등록 0세-6세 인구의 역 추정과 기존 인구통계와의 출생아수 비교)

  • Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1145-1153
    • /
    • 2009
  • The problem of Korean registered population is that population classified by age increases as one grows older until 6 age or 7 age. This paper is to suggest an algorithm of the re-projection under 7 age on Korean registered population and to analysis of comparison with the reported population statistical data. As the result, the reprojections population is trusted in the number of 0 age on the comparison of other reported population statistical data.

  • PDF