• Title/Summary/Keyword: Trust in AI

Search Result 65, Processing Time 0.032 seconds

A Study on User Switching Intention from Contact Center-oriented to AI Chatbot-Oriented Customer Services (컨택센터 중심에서 인공지능 챗봇 중심 고객 서비스로의 사용자 전환의도에 관한 연구)

  • Ann Seunggyu;Ahn Hyunchul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.57-76
    • /
    • 2023
  • This study analyzes the factors and effects on the users' intention to switch from contact center-oriented to AI chatbot-oriented customer services by combining Push-Pull-Mooring Model and provides insights for companies considering the adoption of AI chatbots. To test the model, we surveyed users with experience using chatbots at least once across different age groups. Finally, we analyzed 176 cases for the analysis using IBM SPSS Statistics and SmartPLS 4.0. The results of hypotheses testing rejected the hypotheses for variables of inconsistent quality and low availability of push factors and low switching cost of mooring factor while accepting the hypotheses for the tardy response of push factors and all pull factors. Therefore, these findings provide important implications for researchers and practitioners who wish to conduct research or adopt AI chatbots. In conclusion, users do not feel inconvenienced by the contact center-oriented service but also perceive high trust and convenience with AI chatbot-oriented service. However, despite low switching costs, users consider chatbots a complementary tool rather than an alternative. So, companies adopting AI chatbots should consider what features the users expect from AI chatbots and facilitate these features when implementing AI chatbots.

Analysis of the Influence Factors on Intention of Use for Artificial Intelligence-Based Health Functional Food Recommended Service (인공지능기반 건강기능식품 추천서비스 사용의도에 미치는 영향요인 분석)

  • Yun, Heajeang;Kim, Yeongdae;Kim, Ji-Young;Shin, Yongtae
    • Journal of Information Technology Services
    • /
    • v.20 no.6
    • /
    • pp.1-16
    • /
    • 2021
  • The health functional food market continues to grow, and according to that trend, the subdivision sales of personalized health functional foods, which have been legally prohibited, will be operated as a special regulatory pilot project. Personalized health functional food recommendations have a variety of personalized indicators to consider, and it is believed that algorithmic methods will be needed to proceed in a customized manner considering all of them. This study aims to contribute to the development of the AI-based health functional food recommendation service by studying factors that affect the use of the AI-based health functional food recommendation service. This paper analyzed the intention of use for AI-based health functional food recommendation service based on the information system success model and Technology Acceptance Model. This study considered information quality factors, service quality factor, and system quality factor as independent variables influencing perceived usefulness, perceived ease of use and trust. For empirical analysis, 406 questionnaires were used and the collected data were performed using AMOS 22.0 and SPSS 22.0. Research has shown that the accuracy, timeliness, empathy and availability have a positive effect on usefulness. Understandability and availability has been shown to have a positive effect on ease of use. The accuracy, understandability, empathy and availibility has been shown to have a positive impact on Trust. Usefulness, ease of use and trust all have been shown to have a positive influence on intention of use.

The Impact of the Manufacturing AI Introduction Environment on Technology Trust and Intention to Utilize: Focusing on the TOE Framework (제조AI 도입환경이 기술신뢰와 활용의도에 미치는 영향에 관한 연구: TOE 프레임워크를 중심으로)

  • Wan-Soo Lim;Hyeon-Suk Park
    • Industry Promotion Research
    • /
    • v.9 no.3
    • /
    • pp.101-117
    • /
    • 2024
  • This study empirically analyzed the factors affecting the intention to utilize manufacturing AI in SM-sized manufacturers by applying the TOE framework. Independent variables that are expected to influence were applied, focusing on TOE factors and managerial characteristics that reflect the characteristics of SME manufacturers. In addition, the mediating effect of technology trust and the moderating effect of factory location were analyzed. The results are as follows. First, the relationship between the independent variables and the dependent variable was tested, and the direct effects of the independent variables(complexity, organizational innovation, IT ability, competitive pressure, partner support, and managerial innovation) on the dependent variable were all statistically significant, except for compatibility. Second, the mediation effect of technology trustness was verified to have a full mediation effect between compatibility and utilization intention, and a partial mediation effect between managerial innovation and utilization intention. Third, among the seven independent variables, the moderating effect of factory location(metropolitan and non-metro) between the three independent variables of IT ability, competitive pressure, and partner support and the utilization intention was found to be significant. To increase the intention to utilize manufacturing AI for SM-sized manufacturers, it is recommended that more diverse and broader studies are needed, not only the factors identified in this study, but also the understanding and awareness of manufacturing AI.

Trust-based Relay Selection in Relay-based Networks

  • Wu, Di;Zhu, Gang;Zhu, Li;Ai, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2587-2600
    • /
    • 2012
  • It has been demonstrated that choosing an appropriate relay node can improve the transmission rate for the system. However, such system improvement brought by the relay selection may be degraded with the presence of the malicious relay nodes, which are selected but refuse to cooperate for transmissions deliberately. In this paper, we formulate the relay selection issue as a restless bandit problem with the objective to maximize the average rate, while considering the credibility of each relay node, which may be different at each time instant. Then the optimization problem is solved by using the priority-index heuristic method effectively. Furthermore, a low complexity algorithm is offered in order to facilitate the practical implementations. Simulation results are conducted to demonstrate the effectiveness of the proposed trust-based relay selection scheme.

A Design of AI Cloud Platform for Safety Management on High-risk Environment (고위험 현장의 안전관리를 위한 AI 클라우드 플랫폼 설계)

  • Ki-Bong, Kim
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.2
    • /
    • pp.01-09
    • /
    • 2022
  • Recently, safety issues in companies and public institutions are no longer a task that can be postponed, and when a major safety accident occurs, not only direct financial loss, but also indirect loss of social trust in the company and public institution is greatly increased. In particular, in the case of a fatal accident, the damage is even more serious. Accordingly, as companies and public institutions expand their investments in industrial safety education and prevention, open AI learning model creation technology that enables safety management services without being affected by user behavior in industrial sites where high-risk situations exist, edge terminals System development using inter-AI collaboration technology, cloud-edge terminal linkage technology, multi-modal risk situation determination technology, and AI model learning support technology is underway. In particular, with the development and spread of artificial intelligence technology, research to apply the technology to safety issues is becoming active. Therefore, in this paper, an open cloud platform design method that can support AI model learning for high-risk site safety management is presented.

Development of Dataset Items for Commercial Space Design Applying AI

  • Jung Hwa SEO;Segeun CHUN;Ki-Pyeong, KIM
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2023
  • In this paper, the purpose is to create a standard of AI training dataset type for commercial space design. As the market size of the field of space design continues to increase and the time spent increases indoors after COVID-19, interest in space is expanding throughout society. In addition, more and more consumers are getting used to the digital environment. Therefore, If you identify trends and preemptively propose the atmosphere and specifications that customers require quickly and easily, you can increase customer trust and conduct effective sales. As for the data set type, commercial districts were divided into a total of 8 categories, and images that could be processed were derived by refining 4,009,30MB JPG format images collected through web crawling. Then, by performing bounding and labeling operations, we developed a 'Dataset for AI Training' of 3,356 commercial space image data in CSV format with a size of 2.08MB. Through this study, elements of spatial images such as place type, space classification, and furniture can be extracted and used when developing AI algorithms, and it is expected that images requested by clients can be easily and quickly collected through spatial image input information.

A Study on the Intention of Financial Consumers to Accept AI Services Using UTAUT Model (통합기술수용이론을 이용한 금융소비자들의 인공지능 서비스 수용의도 연구)

  • Kim, Sun Mi;Son, Young Doo
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.1
    • /
    • pp.43-61
    • /
    • 2022
  • Purpose: The purpose of this study was verifying factors that affect to intention to use AI financial services and finding a way of building an user oriented AI ecology. Methods: This study used the UTAUT (Unified Theory of Acceptance and Use of Technology) model with independent variables such as performance expectancy, effort expectancy, social influence, facilitating conditions, trust, personal innovativeness and AI understanding as moderating variable. The data was collected through online & offline survey with questionnaire from 330 financial customers. Results: As a result, the analysis suggested that the performance expectancy, social influence, facilitating conditions, personal innovativeness are statistically significant to the intention to use AI. It was also found that AI knowledge of users differently influence the intention to use through the moderating effect on the facilitating conditions. Conclusion: Performance expectancy, social influence, facilitating conditions, personal innovativeness have positive causation to the intention to use in AI financial service. On the facilitating conditions, unlike other variables, it was found that the user's intention to use was different by the level of AI understanding. It means that customers could have the strong intention to use AI even though they don't have enough pieces of knowledge on the factors. Customers seem to be of recognition that the technology has certain benefits for themselves. The facilitating factors are significantly affected by AI understanding and differently effect on the intention to use AI.

Utilization of Generative Artificial Intelligence Chatbot for Training in Suicide Risk Assessment of Depressed Patients: Focusing on Students at a College of Korean Medicine (우울증 환자의 자살 위험 평가의 훈련을 위한 생성형 인공지능 챗봇의 의학적 교육 활용 사례: 일개 한의과대학 학생을 중심으로)

  • Chan-Young Kwon
    • Journal of Oriental Neuropsychiatry
    • /
    • v.35 no.2
    • /
    • pp.153-162
    • /
    • 2024
  • Objectives: Among OECD countries, South Korea has been having the highest suicide rate since 2018, with 24.1 deaths per 100,000 people reported in 2020. The objectie of this study was to examine the use of generative artificial intellicence (AI) chatbots to train third-year Korean medicine (KM) students in conducting suicide risk assessments for patients with depressive disorders to train students for their clinical practice skills. Methods: The Claude 3 Sonnet model was utilized for chatbot simulations. Students performed mock consultations using standardized suicide risk assessment tools including Ask Suicide-Screening Questions (ASQ) tool and ASQ Brief Suicide Safety Assessment. Experiences and attitudes were collected through an anonymous online survey. Responses were rated on a 1~5 Likert scale. Results: Thirty-six students aged 22~30 years participated in this study. Their scores for interest and appropriateness (4.66±0.57), usefulness (4.60±0.61), and overall experience (4.63±0.60) were high. Their evaluation of the usability of artificial intelligence chatbot was also high at 4.58±0.70 points. However, their trust in chatbot responses (Q12) was lower (3.86±0.99). Common issues related to dissatisfaction included conversation disruptions due to token limits and inadequate chatbot responses. Conclusions: This is the first study investigating generative AI chatbots for suicide risk assessment training in KM education. Students reported high satisfaction, although their trust in chatbot accuracy was moderate. Technical limitations affected their experience. These preliminary findings suggest that generative AI chatbots hold promise for clinical training, particularly for education in psychiatry. However, improvements in response accuracy and conversation continuity are needed.

A Study on Integrity Protection of Edge Computing Application Based on Container Technology (컨테이너 기술을 활용한 엣지 컴퓨팅 환경 어플리케이션 무결성 보호에 대한 연구)

  • Lee, Changhoon;Shin, Youngjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1205-1214
    • /
    • 2021
  • Edge Computing is used as a solution to the cost problem and transmission delay problem caused by network bandwidth consumption that occurs when IoT/CPS devices are integrated into the cloud by performing artificial intelligence (AI) in an environment close to the data source. Since edge computing runs on devices that provide high-performance computation and network connectivity located in the real world, it is necessary to consider application integrity so that it is not exploited by cyber terrorism that can cause human and material damage. In this paper, we propose a technique to protect the integrity of edge computing applications implemented in a script language that is vulnerable to tampering, such as Python, which is used for implementing artificial intelligence, as container images and then digitally signed. The proposed method is based on the integrity protection technology (Docker Contents Trust) provided by the open source container technology. The Docker Client was modified and used to utilize the whitelist for container signature information so that only containers allowed on edge computing devices can be operated.

A Study on the Autonomous Decision Right of Emotional AI based on Analysis of 4th Wave Technology Availability in the Hyper-Linkage (무한연결시 4차 산업기술의 이용 가능성 분석을 통한 감성 인공 지능의 자율 결정권에 관한 연구)

  • Seo, Dae-Sung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.9-19
    • /
    • 2019
  • The effects of artificial intelligence technology is social science research as research on the impact on industry and changes in daily life, etc. This means that developing 'emotion AI' will prepare 'next-generation 3D-vector-sensitive AI'. This suggests the main keywords of the tertiary AI decision-making power. Particularly important results will be achieved because of the importance of current unethical learning and the implementation of decision-making systems that reflect ethical value judgments. This is a data based simulation, and required (1)Available data, (2)the technology for the goal of simulation. This takes into account the general content of the intended simulation based research. Currently, existing researches focus on meaningful research motivation, but this study presents the direction of technology. So, empirical analysis is consistent with the decision-making power of each country vs. new technology firms for AI on ehtic responsibility. As a result, there is a need for a concrete contribution and interpretation that can be achieved for the ethic Responsibility, on the technical side of AI / ML. In AI decision making, analytic power of human empathy should be included tech own trust.