• Title/Summary/Keyword: Trunk Flexion Angle

Search Result 74, Processing Time 0.023 seconds

Effects of Deep Cervical Flexor Exercise with Visual Guide on Muscle Activity and Craniovertebral Angle in Subjects with Forward Head Posture

  • Son, Kuk-kyung;Cynn, Heon-Seock;Lee, Ji-Hyun;Park, Dong-Hwan;Kim, Bo-Been
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.2
    • /
    • pp.53-61
    • /
    • 2019
  • PURPOSE: Forward head posture (FHP) is a head-on-trunk malalignment that results in musculoskeletal dysfunction and neck pain. To improve forward head posture, both the craniocervical flexion exercise (CCFE) and the visual guide (VG) technique have been used. This study compared the immediate effects of CCFE and VG combined with CCFE on craniovertebral angle (CVA), as well as on the activity of the sternocleidomastoid (SCM) and anterior scalene (AS) muscles during CCFE in subjects with FHP. METHODS: In total, 16 subjects (nine males, seven females) with FHP were recruited using the G-power software. Each subject conducted CCFE and CCFE combined with VG in random order. The CVA was recorded using a digital camera and the ImageJ image analysis software. The EMG data of SCM and AS were measured by surface electromyography. A paired T-test was used to assess differences between the effects of the CCFE and VG combined with CCFE interventions in the same group. RESULTS: The CVA was significantly greater for CCFE combined with the VG than for CCFE alone (p<.05). The activity of the SCM and AS muscles was also significantly greater when the VG was combined with CCFE than during CCFE alone across all craniocervical flexion exercise phases (p<.05). CONCLUSION: Use of the VG technique combined with CCFE improved FHP in subjects with FHP compared to CCFE alone.

A Kinematic Analysis on Propulsion of COG by Types of Fin-kick in SCUBA Diving (잠수 휜 킥 유형별 신체중심 추진 동작의 운동학적 분석)

  • Ryew, Che-Cheong;Oh, Hyun-Soo;Kim, Jin-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.11-21
    • /
    • 2007
  • The study was undertaken to present the quantitative materials available in underwater industries, underwater rehabilitation & physical training through comparison & analysis of effects contributing to propulsion of COG by types of fin-kick in underwater activities. For this 3D cinematography was performed for the skilled subjective and conclusions obtained on the basis of analysis of kinematic variables were as follows. In temporal variable the delay in the order of flutter>side>dolphin kick in elapsed time by total & phase resulted in longer sliding phase by larger fin kick of extension & flexion of both leg and thus more contributed in propulsion of COG. than those of the otherwise. In linear variable the contribution ratio to the result of propulsion of COG in both propulsive(mean $35.39{\pm}7.93cm$ in Y axis) and sliding phases(mean $66.36{\pm}11.01cm$ in Y axis)was shown to be order of flutter>dolphin>side fin kick. the maximum velocity of COG in Y direction was showed in both propulsive and sliding phases, and the contribution ratio to the propulsion of COG was in the order of flutter$\geq$dolphin>side fin kick. In angular variable the Significant difference in angle of leg joint by types of fin kick in both leg was showed but no routine order. The Significant difference in angular velocity of leg joint by types of fin kick in both leg was showed in the order of flutter>dolphin$\geq$side fin kick in propulsive but no in sliding phase. The Fluid resistance by tilting angle of trunk in both propulsive and sliding phase was decreased in the order of flutter>dolphin$\geq$side fin kick and tilting angle of trunk of the skilled was smaller than that of the unskilled in difference of maximum mean 7.97degree and minium mean 2.06degree. In summary of the above, It will desirable fin kick type because of more contribution to COG propulsion by the velocity & displacement in Y-axis and less fluid resistance by tilting angle of trunk and larger angular velocity in the case of more delayed in elapsed time of propulsive phase than that of the otherwise.

The Effects of Hip Joint Movement on the Lumbo-pelvic Muscle Activities and Pelvic Rotation During Four-point Kneeling Arm and Leg Lift Exercise in Healthy Subjects

  • Nam-goo Kang;Won-jeong Jeong;Min-ju Ko;Jae-seop ,Oh
    • Physical Therapy Korea
    • /
    • v.30 no.2
    • /
    • pp.144-151
    • /
    • 2023
  • Background: The gluteus maximus (GM) muscle comprise the lumbo-pelvic complex and is an important stabilizing muscle during leg extension. In patients with low back pain (LBP) with weakness of the GM, spine leads to compensatory muscle activities such as instantaneous increase of the erector spinae (ES) muscle activity. Four-point kneeling arm and leg lift (FKALL) is most common types of lumbopelvic and GM muscles strengthening exercise. We assumed that altered hip position during FKALL may increase thoraco-lumbar stabilizer like GM activity more effectively method. Objects: The purpose of this study was investigated that effects of the three exercise postures on the right-sided GM, internal oblique (IO), external oblique (EO), and multifidus (MF) muscle activities and pelvic kinematic during FKALL. Methods: Twenty eight healthy individuals participated in this study. The exercises were performed three conditions of FKALL (pure FKALL, FKALL with 120° hip flexion of the supporting leg, FKALL with 30° hip abduction of the lifted leg). Participants performed FKALL exercises three times each condition, and motion sensor used to measure pelvic tilt and rotation angle. Results: This study demonstrated that no significant change in pelvic angle during hip movement in the FKALL (p > 0.05). However, the MF and GM muscle activities in FKALL with hip flexion and hip abduction is greater than pure FKALL position (p < 0.001). Conclusion: Our finding suggests that change the posture of the hip joint to facilitate GM muscle activation during trunk stabilization exercises such as the FKALL.

A Kinetics Analysis of Forward 11/2 Somersault on the Platform Diving (플랫폼 다이빙 앞으로 서서 앞으로 11/2회전 동작의 운동역학적 분석)

  • Jeon, Kyoung-Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.209-218
    • /
    • 2013
  • This study was to perform the kinetic analysis of forward $1\frac{1}{2}$ somersault on the platform diving. Six men's diving players of the Korea national reserve athletes participated in this study. The variables were analyzed response time, velocity, center of mass (COM), angle, center of pressure (COP) and ground reaction force (GRF) of motion. For measure and analysis of this study, used to synchronized to 4 camcorder and 1 force plate, used to the Kwon3D XP (Ver. 4.0, Visol, Korea) and Kwon GRF (Ver. 2.0, Visol, Korea) for analyzed of variables. The results were as follows; Time factor were observed in maximum knee flexion depending on the extent of use at phase 1 of take-off to execute the somersault. This enabled the subject to secure the highest possible body position in space at the moment of jumping to execute the somersault and prepare for the entry into the water with more ease. Regarding the displacement of COM, all subjects showed rightward movement in the lateral displacement during technical execution. Changes in forward and downward movements were observed in the horizontal and vertical displacements, respectively. In terms of angular shift, the shoulder joint angle tended to decrease on average, and the elbow joints showed gradually increasing angles. This finding can be explained by the shift of the coordinate points of body segments around the rotational axis in order to execute the half-bending movement that can be implemented by pulling the lower limb segments toward the trunk using the upper limb segments. The hip joint angles gradually decreased; this accelerated the rotational movement by narrowing the distance to the trunk. Movement-specific shifts in the COP occurred in the front of and vertical directions. Regarding the changes in GRF, which is influenced by the strong compressive load exerted by the supporting feet, efficient aerial movements were executed through a vertical jump, with no energy lost to the lateral GRF.

Test-retest Reliability and Concurrent Validity of a Headphone and Necklace Posture Correction System Developed for Office Workers

  • Gyu-hyun Han;Chung-hwi Yi;Seo-hyun Kim;Su-bin Kim;One-bin Lim
    • Physical Therapy Korea
    • /
    • v.30 no.3
    • /
    • pp.174-183
    • /
    • 2023
  • Background: Office workers experience neck or back pain due to poor posture, such as flexed head and forward head posture, during long-term sedentary work. Posture correction is used to reduce pain caused by poor posture and ensures proper alignment of the body. Several assistive devices have been developed to assist in maintaining an ideal posture; however, there are limitations in practical use due to vast size, unproven long-term effects or inconsistency of maintaining posture alignment. We developed a headphone and necklace posture correction system (HANPCS) for posture correction using an inertial measurement unit (IMU) sensor that provides visual or auditory feedback. Objects: To demonstrate the test-retest reliability and concurrent validity of neck and upper trunk flexion measurements using a HANPCS, compared with a three-dimensional motion analysis system (3DMAS). Methods: Twenty-nine participants were included in this study. The HANPCS was applied to each participant. The angle for each action was measured simultaneously using the HANPCS and 3DMAS. The data were analyzed using the intraclass correlation coefficient (ICC) = [3,3] with 95% confidence intervals (CIs). Results: The angular measurements of the HANPCS for neck and upper trunk flexions showed high intra- (ICC = 0.954-0.971) and inter-day (ICC = 0.865-0.937) values, standard error of measurement (SEM) values (1.05°-2.04°), and minimal detectable change (MDC) values (2.92°-5.65°). Also, the angular measurements between the HANPCS and 3DMAS had excellent ICC values (> 0.90) for all sessions, which indicates high concurrent validity. Conclusion: Our study demonstrates that the HANPCS is as accurate in measuring angle as the gold standard, 3DMAS. Therefore, the HANPCS is reliable and valid because of its angular measurement reliability and validity.

Effect of Work Environment and Low Back Pain on the Structural and Muscle Strength Changes in Lumbar Spine (작업환경과 요통이 요추의 구조 및 근력의 변화에 미치는 영향)

  • Kim, Na-Yeon;Kang, Jae-Hui;Lee, Hyun
    • Journal of Acupuncture Research
    • /
    • v.27 no.3
    • /
    • pp.93-104
    • /
    • 2010
  • Objectives : The purpose of this study is to observe the effects of work environment and low back pain on the structural and muscle strength changes in lumbar spine to helpful for preventation and cure of low back pain. Methods : Through measuring of lumbosacral angle, lumbar lordotic angle, lumbar gravity line ratio analyzed structure of lumbar spine and using Trunk Extension Flexion Program of CYBEX NORM System(cybex770+TMC, USA) analyzed Flex. PT, Ext. PT, E/F ratio of lumbar spine of company employees given a medical examination. Results : According to work environment, lumbar gravity line ratio is higher in white collar group than in blue collar group, Ext. PT is significantly lower in white collar group than in blue collar group. According to low back pain or not, lumbar gravity line ratio, Ext. PT is lower in low back pain group than in non-low back pain group. Conclusions : Work environment and low back pain effects on the structural and muscle strength changes in lumbar spine.

The Process of the Kinematic Coordination and Control of Dollyochagi Motion in Taekwondo (태권도 돌려차기 동작의 운동학적 협응 및 제어과정)

  • Yoon, Chang-Jin;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.95-104
    • /
    • 2008
  • The purpose of this study was to investigate kinematic coordination and control of lower segments in skill process. For the investigation, we examined the difference of resultant linear velocity of segments and angle vs angle graph. Novice subjects were 9 male middle school students who has never been experienced a taekwondo and expert subjects were 7 university taekwondo players. We analyzed kinematic variables of Dollyochagi motion through videographical analysis and the conclusion were as follows. 1. Examining the graph of novice subjects' maximal resultant linear velocity of the thigh, shank, and foot segment, as it gets closer to the end of the training, the maximal resultant linear velocity in each segment increased. Statistical analysis showed the following results; thigh segment caused the increase of speed, using the trunk segment's momentum in the latter term of learning, while the shank segment utilized the momentum of the adjacent proximal segment at the beginning of learning, and the foot segment in the middle of learning. 2. Until the point where the knee joint angle is minimum, as the novice group learn the skill, the flexion of knee and hip joints has changed into the form of coordination pattern in phase. On the other hand, the expert group showed continual coordination pattern in phase that the movement sequences were smooth. From the knee joint maximal flexion to impact timing, all novice and expert groups showed coordination pattern out of phase. 3. From the knee joint maximal flexion to impact timing, the ankle joint was fixed and the knee joint was extended to all the novice stages and expert subjects.

The Effect of Dynamic Lumbar Stabilization Exercise to Be Affected with Improvement and Maintenance of Trunk Stability after Opened Microscopic Laser Discectomy (개방형 현미경적 요추간판 제거술 후 동적 요부 안정화 운동에 따른 체간 안정성의 개선과 유지)

  • Nam, Kun-Woo;Kim, Jong-Soon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.37-48
    • /
    • 2005
  • Objects: This study is designed to analysis improvement and maintaince of trunk stability targeting patients who need post operative rehabilitation exercise after undergoing opened microscopic laser discectomy(OMLD) due to HNP. Method: Between March 2004 and February 2005 a total sixty patients who underwent OMLD due to $L_4/L_5$, $L_5/S_1$ HNP and who agreed to the experiment were subject for this study. Experimental group consisted of 18 subjects, and they underwent 45 minutes dynamic lumbar stabilization exercise And control group consisted of 18 subjects who conducted conservative physical therapy based on the use of physical modality for 45 minutes except to exercise. Results: Experimental group that was lumbar extensor's isometric peak torque, weight distribution of both leg, trunk muscle balance and Oswestry LBP disability index increased during 12 weeks in a statistically significant manner compared to before exercise (p<.05). When re-test was tried, isometric peak torque (p>.05) and Oswestry LBP disability index(p<.05) maintained 12th week level or improved. Weight distribution rate of both leg and trunk muscle balance maintained the level of 8th week of exercise execution(p<.05). Control group that was lumbar extensor's isometric peak torque, weight distribution rate of both leg and trunk muscle balance aggravated during 12 weeks compared to pre-test(p>.05) But, Oswestry LBP disability index increased in a statistically significant level compared to pre-test(p<.05). When re-test was tried, isometric peak torque increased slightly compared to pre-test, but decreased when at least $60^{\circ}$ flexion angle(p>.05). Weight distribution rate of both leg and trunk muscle balance also aggravated compared to pre-test(p>.05), and Oswestry LBP disability index was similar to the 4th week of physical therapy execution(p>.05). Conclusion: Successive postoperative Especially, Application of dynamic lumbar stabilization exercise program is important than traditional lumbar strengthening exercise program in the maintaince of spinal stability.

  • PDF

A Study on the Evaluation of Horizontal, Vertical, Asymmetric and Coupling Multipliers of the NIOSH Lifting Equation in Korean Male (한국인 20대 남성의 NIOSH Lifting Equation 계수평가에 관한 연구)

  • Bae, Dong-Chul;Kim, Yong-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • The objective of this paper was to evaluate the effectiveness of horizontal, vertical, asymmetric and coupling multipliers for manual material handling. Lifting tasks with 5 different horizontal distances ($30{\sim}70cm$) for 6 vertical distances(ankle, knee, waist, elbow, shoulder and head height) were experimented. The muscle activity and muscle exertion level during asymmetric load handling(without trunk flexion) was experimented. Lifting tasks with and without handle tote box for three postures(straight, bending, right angle posture) were experimented. The degrading tendency did not appeared almost in $60{\sim}70cm$ interval's horizontal distance. As a result of ANOVA, MVC paid attention to horizontal and vertical distance but cross effect was insignificant(p<0.01). The change of the MVC according to the horizontal, vertical distance appeared similar from of RWL. The results of normalized MVC measurement were decreased about 16%, 24%, 34% respectively as the asymmetry angle was $30^{\circ}$, $60^{\circ}$, $90^{\circ}$. RMS EMG values of right erector spinae muscles were decreased as the work posture went to $90^{\circ}$ and those of left erector spinae muscles were increased until the asymmetry angle was $40^{\circ}$ but decreased continually over $40^{\circ}$. 7 subjects, activities of left and right latissimus dorsi muscles were maintained constantly, while for remainer, those were irregular. MVC reduced maximum 23% by type of handle. MVC was highest in straight posture, but was lowest in right angle posture. As a result of ANOVA, MVC paid attention to posture, coupling(p<0.01). To all handle types, biceps brachii activity was increased in right angle posture, but reduced in straight posture. Based on the results of this study, it is suggested that the NIOSH guideline should not be directly applied to Korean without reasonable reexamination. In addition, we need to afterward study through an age classification.

The Process of the Interjoint and Intersegmental Coordination of Side Kick Motion in Taekwondo (태권도 옆차기 동작의 인체관절과 분절사이의 협응 과정)

  • Yoon, Chang-Jin;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.179-189
    • /
    • 2008
  • The purpose of this study was to investigate interjoint and intersegmental coordination of lower segments in skill process. For the investigation, we examined the difference of resultant linear velocity of segments and angle vs angle graph. Novice subjects were 9 male middle school students who have never been experienced a taekwondo. We analyzed kinematic variables of Side Kick motion through videographical analysis. The conclusions were as follows. 1. Examining the graph of novice subjects' maximal resultant linear velocity of the thigh, shank, and foot segment, as it gets closer to the end of the training, the maximal resultant linear velocity in each segment increases which can be assumed to be a result of the effective momentum transfer between adjacent segments. 2 This research showed a sequential transfer from trunk, to thigh, and then to shank as it gets closer to the end of learning at intersegment angular velocity, and it also showed pattern of throwlike motion and pushlike motion. 3. In three dimension of flexion-extension, adduction-abduction and internal-external rotation of the thigh and shank segment, the angle-angle diagram of knee joint and of hip joint showed that dynamic change was indicated at the beginning of learning but stable coordination pattern was indicated like skilled subject as novice subjects became skilled.