• Title/Summary/Keyword: Truncation Time

Search Result 85, Processing Time 0.023 seconds

Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads

  • Di Paola, M.;Muscolino, G.;Sofi, A.
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.107-130
    • /
    • 2004
  • This paper presents a time-domain approach for analyzing nonlinear random vibrations of long-span suspended cables under transversal wind. A consistent continuous model of the cable, fully accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of spatial correlation are properly included by modeling wind velocity fluctuation as a random function of time and of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1V-2D) random field. Within the context of a Galerkin's discretization of the equations governing cable motion, a very efficient Monte Carlo-based technique for second-order analysis of the response is proposed. This procedure starts by generating sample functions of the generalized aerodynamic loads by using the spectral decomposition of the cross-power spectral density function of wind turbulence field. Relying on the physical meaning of both the spectral properties of wind velocity fluctuation and the mode shapes of the vibrating cable, the computational efficiency is greatly enhanced by applying a truncation procedure according to which just the first few significant loading and structural modal contributions are retained.

Real-Time Maximum Power Point Tracking Method Based on Three Points Approximation by Digital Controller for PV System

  • Kim, Seung-Tak;Bang, Tae-Ho;Lee, Seong-Chan;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1447-1453
    • /
    • 2014
  • This paper proposes the new method based on the availability of three points measurement and convexity of photovoltaic (PV) curve characteristic at the maximum power point (MPP). In general, the MPP tracking (MPPT) function is the important part of all PV systems due to their power-voltage (P-V) characteristics related with weather conditions. Then, the analog-to-digital converter (ADC) and low pass filter (LPF) are required to measure the voltage and current for MPPT by the digital controller, which is used to implement the PV power conditioning system (PCS). The measurement and quantization error due to rounding or truncation in ADC and the delay of LPF might degrade the reliability of MPPT. To overcome this limitation, the proposed method is proposed while improving the performances in both steady-state and dynamic responses based on the detailed investigation of its properties for availability and convexity. The performances of proposed method are evaluated with the several case studies by the PSCAD/EMTDC$^{(R)}$ simulation. Then, the experimental results are given to verify its feasibility in real-time.

Design and Analysis of an Impedance-Tuned Monopole Microstrip Patch Antenna using the Finite Difference Time Domain Method (유한 차분 시간 영역 해석법을 이용한 임피던스 정합 모노폴 마이크로스트립 안테나 설계 및 해석)

  • Jung, Young-Ho;Lee, Dong-Cheol;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.11
    • /
    • pp.28-33
    • /
    • 2002
  • In this paper, the impedance-tuned monopole microstrip antenna designed for PCS is analyzed using finite difference time domain(FDTD) method. The perfectly matched layer(PML) absorbing material condition proposed by Berenger is used for the truncation of finite difference time domain lattice. A Gaussian pulse is selected as an excitation signal and a resistive voltage source model is used to reduce the error caused by the reflection waves. The FDTD method is inherently a near field technique. Therefore, the near field to far field transformation is need to compute far field antenna parameters such as radiation patterns and gain. The near field to far field transformation can be done both in the time domain and the frequency domain. We use the frequency domain transformation to compute the far field radiation patterns at single frequency. All the numerical results obtained by the FDTD method are compared with simulation results using the HFSS software. Good agreements are obtained in all cases.

Linear Unequal Error Protection Codes based on Terminated Convolutional Codes

  • Bredtmann, Oliver;Czylwik, Andreas
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.12-20
    • /
    • 2015
  • Convolutional codes which are terminated by direct truncation (DT) and zero tail termination provide unequal error protection. When DT terminated convolutional codes are used to encode short messages, they have interesting error protection properties. Such codes match the significance of the output bits of common quantizers and therefore lead to a low mean square error (MSE) when they are used to encode quantizer outputs which are transmitted via a noisy digital communication system. A code construction method that allows adapting the code to the channel is introduced, which is based on time-varying convolutional codes. We can show by simulations that DT terminated convolutional codes lead to a lower MSE than standard block codes for all channel conditions. Furthermore, we develop an MSE approximation which is based on an upper bound on the error probability per information bit. By means of this MSE approximation, we compare the convolutional codes to linear unequal error protection code construction methods from the literature for code dimensions which are relevant in analog to digital conversion systems. In numerous situations, the DT terminated convolutional codes have the lowest MSE among all codes.

Investigation into direct fabrication of nano-patterns using nano-stereolithography (NSL) process (나노 스테레오리소그래피 공정을 이용한 무(無)마스크 나노 패턴제작에 관한 연구)

  • Park Sang Hu;Lim Tae-Woo;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.156-162
    • /
    • 2006
  • Direct fabrication of nano patterns has been studied employing a nano-stereolithography (NSL) process. The needs of nano patterning techniques have been intensively increased for diverse applications for nano/micro-devices; micro-fluidic channels, micro-molds. and other novel micro-objects. For fabrication of high-aspect-ratio (HAR) patterns, a thick spin coating of SU-8 process is generally used in the conventional photolithography, however, additional processes such as pre- and post-baking processes and expansive precise photomasks are inevitably required. In this work, direct fabrication of HAR patterns with a high spatial resolution is tried employing two-photon polymerization in the NSL process. The precision and aspect ratio of patterns can be controlled using process parameters of laser power, exposure time, and numerical aperture of objective lens. It is also feasible to control the aspect ratio of patterns by truncation amounts of patterns, and a layer-by-layer piling up technique is attempted to achieve HAR patterns. Through the fabrication of several patterns using the NSL process, the possibility of effective patterning technique fer various N/MEMS applications has been demonstrated.

Modified Product-Limit Estimator via Period Analysis (기간분석에 따른 수정된 누적한계 추정량)

  • Kim, Jin-Heum;Ahn, Yoon-Ok
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.395-406
    • /
    • 2006
  • Long-term survival rates are the most commonly used outcome measures for patients with cancer. However, traditional long-term survival statistics, which are derived by cohort analysis or complete analysis, essentially reflect the survival expectations of patients diagnosed many years ago. They are often outdated at the time they become available. In this article, we propose a modified product-limit method to obtain up-to-date estimates of long-term survival rates via a period analysis. The proposed method is illustrated with cancer registry data collected from January 1993 to December 1997.

Numerical Study on Extended Boussinesq Equations with Wave Breaking (쇄파구조를 고려한 확장형 Boussinesq 방정식의 수치 실험)

  • 윤종태;이창훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.3
    • /
    • pp.149-155
    • /
    • 1999
  • A treatment of wave breaking is included in the extended Boussinesq equations of Nwogu. A spatially distributed source function and sponge layers are used to reduce the reflected waves in the computa¬tional domain. The model uses fourth-order Adams predictor-corrector method to advance in time, and discretizes first-order spatial derivatives to fourth-order accuracy, and thus reducing all truncation errors to a level smaller than the dispersive terms. The generated wave fields are found to be good and the corresponding wave heights are very close to their target values. For the tests of wave breaking, although agreement is considered to be reasonable, wave heights in the inner surf zone are over-predicted. This indicates the breaking parameters in the model should be adjusted.

  • PDF

A Study on Transient Analysis of Linear Induction Motor with Ununiform Airgap for Shallow-depth Underground Train (저심도철도용 선형유도전동기의 공극 불균일 과도특성 분석 연구)

  • Lee, Hyung-Woo;Park, Chan-Bae;Won, Sunghong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.723-729
    • /
    • 2013
  • This paper presents an parallel type Linear Induction Motor with ununiform airgap for a shallow-depth underground train with 100‰ grade and 15 m curvature. This parallel type LIM has enough gradability but has inherently ununiform airgap between center and end parts. Consequently, performance when the train passes curved section should be considered with transient analysis. Moreover, general parallel operation, 1C2M which is usually used for train operation, deteriorates LIM performance because of different line velocity between inner and outer LIMs. Transient analysis has many problems such as huge model, lots of meshes, very long calculation time, truncation error and so on. This paper has presented a novel technique using equivalent linear rotating model in order to solve these problems and has analyzed parallel type LIM by using the proposed technique. Finally, LIM performance according to independent operating control has been investigated.

Comparison of Semi-Implicit Integration Schemes for Rate-Dependent Plasticity (점소성 구성식의 적분에 미치는 선형화 방법의 영향)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1907-1916
    • /
    • 2003
  • During decades, there has been much progress in understanding of the inelastic behavior of the materials and numerous inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. To obtain the increment of state variable, its evolution laws are linearized by several approximation methods, such as general midpoint rule(GMR) or general trapezoidal rule(GTR). In this investigation, semi-implicit integration schemes using GTR and GMR were developed and implemented into ABAQUS by means of UMAT subroutine. The comparison of integration schemes was conducted on the simple tension case, and simple shear case and nonproportional loading case. The fully implicit integration(FI) was the most stable but amplified the truncation error when the nonlinearity of state variable is strong. The semi-implicit integration using GTR gave the most accurate results at tension and shear problem. The numerical solutions with refined time increment were always placed between results of GTR and those of FI. GTR integration with adjusting midpoint parameter can be recommended as the best integration method for viscoplastic equation considering nonlinear kinematic hardening.

Harmonic Identification Algorithms Based on DCT for Power Quality Applications

  • Yepes, Alejandro G.;Freijedo, Francisco D.;Doval-Gandoy, Jesus;Sanchez, Oscar Lopez;Fernandez-Comesana, Pablo;Alvarez, Jano Malvar
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.33-43
    • /
    • 2010
  • The increasing demand for non-sinusoidal currents affects the quality of distribution networks. Harmonic detection is a crucial step in the cancellation of those components by active power filters. In this paper, the discrete cosine transform (DCT) is compared with different implementations based on Fourier transforms, demonstrating their equivalences and the advantages provided by the former. We demonstrate that the phase error in the presence of grid frequency deviations and the transient length are reduced by half in comparison to the discrete Fourier transform. A novel algorithm is developed to provide frequency adaptation to the DCT, taking advantage of its good features. The window width is adjusted in real time according to the actual value of the grid fundamental frequency by means of a phase-locked loop. A technique based on dithering is employed to overcome the limitation caused by the truncation of the window number of samples, so the frequency resolution is enhanced. The theoretical approach is verified by simulated and experimental results.