• Title/Summary/Keyword: Truncation Error

Search Result 94, Processing Time 0.024 seconds

Error Control Strategy in Error Correction Methods

  • KIM, PHILSU;BU, SUNYOUNG
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.301-311
    • /
    • 2015
  • In this paper, we present the error control techniques for the error correction methods (ECM) which is recently developed by P. Kim et al. [8, 9]. We formulate the local truncation error at each time and calculate the approximated solution using the solution and the formulated truncation error at previous time for achieving uniform error bound which enables a long time simulation. Numerical results show that the error controlled ECM provides a clue to have uniform error bound for well conditioned problems [1].

A Stream Line Method to Remove Cross Numerical Diffusion and Its Application to The Solution of Navier-Stokes Equations (교차수치확산을 제거하는 Stream Line방법과 Wavier-Stokes방정식의 해를 위한 적용)

  • Soon Heung Chang
    • Nuclear Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.21-28
    • /
    • 1984
  • The reduction of the truncation error including numerical diffusion, has been one of the most important tasks in the development of numerical methods. The stream line method is used to cancel cross numerical diffusion and some of the non-diffusion type truncation error. The two-step stream line method which is the combination of the stream line method and finite difference methods is developed in this work for the solution of the govern ing equations of incompressible buoyant turbulent flow. This method is compared with the finite difference method. The predictions of both classes of numerical methods are compared with experimental findings. Truncation error analysis also has been performed in order to the compare truncation error of the stream line method with that of finite difference methods.

  • PDF

Improved block-wise MET for estimating vibration fields from the sensor

  • Jung, Byung Kyoo;Jeong, Weui Bong;Cho, Jinrae
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.279-285
    • /
    • 2017
  • Modal expansion technique (MET) is a method to estimate the vibration fields of flexible structures by using eigenmodes of the structure and the signals of sensors. It is the useful method to estimate the vibration fields but has the truncation error since it only uses the limit number of the eigenmodes in the frequency of interest. Even though block-wise MET performed frequency block by block with different valid eigenmodes was developed, it still has the truncation error due to the absence of other eigenmodes. Thus, this paper suggested an improved block-wise modal expansion technique. The technique recovers the truncation errors in one frequency block by utilizing other eigenmodes existed in the other frequency blocks. It was applied for estimating the vibration fields of a cylindrical shell. The estimated results were compared to the vibration fields of the forced vibration analysis by using two indices: the root mean square error and parallelism between two vectors. These indices showed that the estimated vibration fields of the improved block-wise MET more accurately than those of the established METs. Especially, this method was outstanding for frequencies near the natural frequency of the highest eigenmode of each block. In other words, the suggested technique can estimate vibration fields more accurately by recovering the truncation errors of the established METs.

NEW RESULTS TO BDD TRUNCATION METHOD FOR EFFICIENT TOP EVENT PROBABILITY CALCULATION

  • Mo, Yuchang;Zhong, Farong;Zhao, Xiangfu;Yang, Quansheng;Cui, Gang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.755-766
    • /
    • 2012
  • A Binary Decision Diagram (BDD) is a graph-based data structure that calculates an exact top event probability (TEP). It has been a very difficult task to develop an efficient BDD algorithm that can solve a large problem since its memory consumption is very high. Recently, in order to solve a large reliability problem within limited computational resources, Jung presented an efficient method to maintain a small BDD size by a BDD truncation during a BDD calculation. In this paper, it is first identified that Jung's BDD truncation algorithm can be improved for a more practical use. Then, a more efficient truncation algorithm is proposed in this paper, which can generate truncated BDD with smaller size and approximate TEP with smaller truncation error. Empirical results showed this new algorithm uses slightly less running time and slightly more storage usage than Jung's algorithm. It was also found, that designing a truncation algorithm with ideal features for every possible fault tree is very difficult, if not impossible. The so-called ideal features of this paper would be that with the decrease of truncation limits, the size of truncated BDD converges to the size of exact BDD, but should never be larger than exact BDD.

Truncation Error Problem of Error Diffusion Method (오차 확산 방법의 절삭 오차 문제)

  • Jho, Cheung-Woon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.850-856
    • /
    • 2011
  • The error diffusion method is one of the digital halftoning methods that diffuses quantization errors of current processing pixel to neighboring pixels and get a high-quality black-white image. This method has the problematic case which partially increase or decrease summation of diffused errors in the process of diffusing the quantization error. In this paper, we analyze Floyd-Steinberg method, Jarvis-Judice-Ninke method, Stucki method, and Shiau-Fan method as a representative case of error diffusion methods and propose a solution method of this problem.

노심 동특성 분석 정확도 및 성능 향상을 위한 Time Step 제어방법 개선

  • 김영일;김영진;주형국;김택겸
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.79-84
    • /
    • 1997
  • 동특성 분석 코드 시스템 PANBOX2는 시간에 대한 미분을 Implicit Euler 방법을 사용하여 근사한다. 이 경우 Local Truncation Error는 중성자속의 이차 미분에 비례한다. Time-Step-Doubling 기법을 이용하여 Local Truncation Error의 근사치를 구하고 이를 이용하여 Time Step Size를 조절해 주는 방법을 동특성 분석 코드 시스템 PANBOX2에 도입하였다. LRA와 NEACRP 제어봉 인출사고 검증문제에 대한 분석 결과, PANBOX2 시스템의 기존 방법에 비해 효과적으로 Time Step을 제어하였으며 보다 정확한 결과를 얻을 수 있었다.

  • PDF

Fast Cardiac CINE MRI by Iterative Truncation of Small Transformed Coefficients

  • Park, Jinho;Hong, Hye-Jin;Yang, Young-Joong;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • Purpose: A new compressed sensing technique by iterative truncation of small transformed coefficients (ITSC) is proposed for fast cardiac CINE MRI. Materials and Methods: The proposed reconstruction is composed of two processes: truncation of the small transformed coefficients in the r-f domain, and restoration of the measured data in the k-t domain. The two processes are sequentially applied iteratively until the reconstructed images converge, with the assumption that the cardiac CINE images are inherently sparse in the r-f domain. A novel sampling strategy to reduce the normalized mean square error of the reconstructed images is proposed. Results: The technique shows the least normalized mean square error among the four methods under comparison (zero filling, view sharing, k-t FOCUSS, and ITSC). Application of ITSC for multi-slice cardiac CINE imaging was tested with the number of slices of 2 to 8 in a single breath-hold, to demonstrate the clinical usefulness of the technique. Conclusion: Reconstructed images with the compression factors of 3-4 appear very close to the images without compression. Furthermore the proposed algorithm is computationally efficient and is stable without using matrix inversion during the reconstruction.

A module generator for variable-precision multiplier core with error compensation for low-power DSP applications (저전력 DSP 응용을 위한 오차보상을 갖는 가변 정밀도 승산기 코어 생성기)

  • Hwang, Seok-Ki;Lee, Jin-Woo;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.129-136
    • /
    • 2005
  • A multiplier generator, VPM_Gen (Variable-Precision Multiplier Generator), which generates Verilog-HDL models of multiplier cores with user-defined bit-width specification, is described. The bit-widths of operands are parameterized in the range of $8-bit{\sim}32-bit$ with 1-bit step, and the product from multiplier core can be truncated in the range of $8-bit{\sim}64-bit$ with 2-bit step, resulting that the VPM_Gen can generate 3,455 multiplier cores. In the case of truncating multiplier output, by eliminating the circuits corresponding to the truncation part, the gate counts and power dissipation can be reduced by about 40% and 30%, respectively, compared with full-precision multiplier. As a result, an area-efficient and low-power multiplier core can be obtained. To minimize truncation error, an adaptive error-compensation method considering the number of truncation bits is employed. The multiplier cores generated by VPM_Gen have been verified using Xilinx FFGA board and logic analyzer.

Simulation of Voltage and Current Distributions in Transmission Lines Using State Variables and Exponential Approximation

  • Dan-Klang, Panuwat;Leelarasmee, Ekachai
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • A new method for simulating voltage and current distributions in transmission lines is described. It gives the time domain solution of the terminal voltage and current as well as their line distributions. This is achieved by treating voltage and current distributions as distributed state variables (DSVs) and turning the transmission line equation into an ordinary differential equation. Thus the transmission line is treated like other lumped dynamic components, such as capacitors. Using backward differentiation formulae for time discretization, the DSV transmission line component is converted to a simple time domain companion model, from which its local truncation error can be derived. As the voltage and current distributions get more complicated with time, a new piecewise exponential with controllable accuracy is invented. A segmentation algorithm is also devised so that the line is dynamically bisected to guarantee that the total piecewise exponential error is a small fraction of the local truncation error. Using this approach, the user can see the line voltage and current at any point and time freely without explicitly segmenting the line before starting the simulation.

  • PDF

A Low-Error Truncated Booth Multiplier (작은 오차를 갖는 절사형 Booth 승산기)

  • 정해현;박종화;신경욱
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.617-620
    • /
    • 2001
  • This paper describes an efficient error-compensation technique for designing a low-error truncated Booth multiplier that receives two N-bit numbers and produces an N-bit product by eliminating the N least-significant bits. Applying the proposed method, a truncated Booth multiplier for area-efficient and low-power applications has been designed, and its performance (truncation error, area) was analyzed. Since the truncated Booth multiplier omits about half the partial product generators and adders, it has an area reduction by about 35%~40%, compared with non-truncated parallel multipliers. Error analysis shows that the proposed approach reduces the average truncation error by approximately 30%~40%, compared with conventional methods.

  • PDF