• Title/Summary/Keyword: True dip

Search Result 9, Processing Time 0.024 seconds

Effective Measuring Method of Discontinuity Orientation (불연속면 방향의 효율적인 측정 방안)

  • 김해경;고영구
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.321-334
    • /
    • 2003
  • This study is aimed at the effective measurement plan of discontinuity orientation on rock mass. The discontinuity orientation is expressed as three methods. strike/dip. dipdirection/dip (a three digit number / a two digit number) and right hand rule. Generally, strike/dip is measured with clinometer. and dipdirection/dip with silva compass(type15). A sign of strike/dip. discontinuity orientation is used to geological survey. and dipdirection/dip to engineering. Dipdirection/dip converted by strike/dip measured with clinometer is useful on the statistical analysis of a lot of data. To measure the azimuth of the dip with clinometer and to change strike/dip to dipdirection/dip may have potential errors in each person. The newly designed apparatus, clinometer equipped by a rotational azimuth plate and an arrow to measuring strike and dipdirection, has been developed to measure effectively the discontinuity orientation with two method (strike/dip and dipdirection/dip). The measuring method of discontinuity orientation with clinometer having newly designed apparatus is effective one for accurate measurement of strike as well as dipdirection which is degrees counted clockwise from true north. Used by clinometer with newly designed apparatus, concurrent measuring strike/dip and dipdirecton/dip of discontinuity is possible. In application to measuring discontinuity orientation on rock slope, it has been recognized that the newly designed method, unambiguously, led to drop measuring errors comparing with existing measuring apparatuses. Therefore, it is considered that measuring method of discontinuity orientation (strike/dip and dipdirecton/dip) by the newly designed apparatus is useful to one in geological engineering investigation of road design, and to unskilled investigator.

Assessment of Rock Mass Strength Using Three-Dimensional Numerical Analysis with the Distinct Element Method (개별요소법 기반의 삼차원 수치해석을 통한 절리성 암반의 강도특성 평가)

  • Junbong Bae;Jeong-Gi Um;Hoyoung Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.573-586
    • /
    • 2023
  • Joints or weak planes can induce anisotropy in the strength and deformability of fractured rock masses. Comprehending this anisotropic behavior is crucial to engineering geology. This study used plaster as a friction material to mold specimens with a single joint. The strength and deformability of the specimens were measured in true triaxial compression tests. The measured results were compared with three-dimensional numerical analysis based on the distinct element method, conducted under identical conditions, to assess the reliability of the modeled values. The numerical results highlight that the principal stress conditions in the field, in conjunction with joint orientations, are crucial factors to the study of the strength and deformability of fractured rock masses. The strength of a transversely isotropic rock mass derived numerically considering changes in the dip angle of the joint notably increases as the intermediate principal stress increases. This increment varies depending on the dip of the joint. Moreover, the interplay between the dip direction of the joint and the two horizontal principal stress directions dictates the strength of the transversely isotropic rock mass. For a rock mass with two joint sets, the set with the steeper dip angle governs the overall strength. If a rock bridge effect occurs owing to the limited continuity of one of the joint sets, the orientation of the set with longer continuity dominates the strength of the entire rock mass. Although conventional three-dimensional failure criteria for fractured rock masses have limited applicability in the field, supplementing them with numerical analysis proves highly beneficial.

A Simple Vector Calculation Method for the True Failt Displacement Distance (백터계산을 이용한 단층의 이동량 산출법)

  • 황상기
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.365-371
    • /
    • 1999
  • Ture diplacement of a fault monement is calculated from the displacement of the index plane such as bedding on an outcrop surface. The input parameters are the orientations of the index, fault, and outcrop planes. It is also necessary to input the orientation of fault striation and the offset distance of the index plane on the outcrop surface. The distances of the total, strike, horizontal and dip slip components of the fault movement are calculated from the input parameters. Hwang(1998) conducted a simlar calculation using trigonoment method. To apply the previous method, the offset distance of the index plane must be measured on a vertical outcrop surface. The calculation method of this study accepts the offset distence of index plane on an outcrop plane of any orientation. Calculation results from both method are indentical, regardless of the simplicity of the new method.

  • PDF

3-D reverse-time migration using acoustic wave equation: An experience of SEG/EAGE salt data set

  • Yoon, Kwang-Jin;Shin, Chang-Soo;Hong, Soon-Duk;Yang, Seung-Jin;Suh, Sang-Yong
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.156-158
    • /
    • 2002
  • Reverse-time migration has no dip limitations and one of the most promising methods to preserve true amplitudes. We applied 3-D prestack reverse time migration based on a pseudo-spectral implementation of the acoustic wave equation to the SEG/EAGE salt dome synthetic data set. We were able to illuminate sub salt reflectors of the SEG/EAGE salt model that were barely observable in the Kirchhoff migration images. Using the pseudo-spectral modeling technique, we could implement reverse-time migration within the core memory, which could be equipped to a personal computer.

  • PDF

Protein-Protein Interaction Prediction using Interaction Significance Matrix (상호작용 중요도 행렬을 이용한 단백질-단백질 상호작용 예측)

  • Jang, Woo-Hyuk;Jung, Suk-Hoon;Jung, Hwie-Sung;Hyun, Bo-Ra;Han, Dong-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.851-860
    • /
    • 2009
  • Recently, among the computational methods of protein-protein interaction prediction, vast amounts of domain based methods originated from domain-domain relation consideration have been developed. However, it is true that multi domains collaboration is avowedly ignored because of computational complexity. In this paper, we implemented a protein interaction prediction system based the Interaction Significance matrix, which quantified an influence of domain combination pair on a protein interaction. Unlike conventional domain combination methods, IS matrix contains weighted domain combinations and domain combination pair power, which mean possibilities of domain collaboration and being the main body on a protein interaction. About 63% of sensitivity and 94% of specificity were measured when we use interaction data from DIP, IntAct and Pfam-A as a domain database. In addition, prediction accuracy gradually increased by growth of learning set size, The prediction software and learning data are currently available on the web site.

Quantitative Analysis on the Structure of Hambaek Syncline (정량적(定量的) 해석(解析)에 의(依)한 함백향사(咸白向斜) 구조(構造) 연구(硏究))

  • Park, Rin Sik;Min, Kyung Duck
    • Economic and Environmental Geology
    • /
    • v.13 no.3
    • /
    • pp.141-158
    • /
    • 1980
  • A geologic structure could be formed through various processes, because there are a number of factors which control the deformation of the Earth's crust. In geology, we could call it geological epistemology to describe exactly a geologic structure, and call it geological logics to infer logically the deforming process through which the geologic structure had been formed. Degree of legitimacy of geological logics depends upon the degree of exactness of geological epistemology. This study described quantitatively 3-dimensional Hambaek Syncline through computer analysis, and examined qualitatively into its deforming mechanism based on the results of 3-dimensional analysis of the structure. Input data for the computer analysis are dips and dip directions of bedding planes of the structure. The Hambaek Syncline disclose a minor fold group of NE-SW or NNE-SSW trend and a large scale fold of E-W trend. The conclusions of this study are as follows: (1) The fold of E-W trend is primary fold $(F_1)$ and the minor fold group of NE-SW or NNE-SSW trend secondary fold $(F_2)$. (2) Hambaek Syncline is cylindrical type fold. (3) Apparent axial trace of Hambaek syncline does not coincide with true axial trace. The apparent axial trace is $N70^{\circ}-80^{\circ}W$ in Gohan and Sabuk area, and changes to $N70^{\circ}-80^{\circ}E$ in the westward of the area, while the true axial trace is $N40^{\circ}-70^{\circ}W$ in the former, and $N60^{\circ}-80^{\circ}E$ in the latter area. (4) Westward dipping of axial plane of the minor fold group of NE-SW or NNE-SSW trend can be attributed to simple shear movements along overthrusts. (5) Angle between axial trace and the directional trace of the maximum principal compressive stress $({\sigma}_1)$ may not be perpendicular each other. The angle between them is governed by the following factors; 1) the plunge of fold axis 2) the dip of axial surface 3) cylindrisity (6) The mean axial trace of Hambaek Syncline $(F_1)$ is $N45.6^{\circ}W$, and the directional trace of ${\sigma}_1$ is $N52.4^{\circ}E$ (7) The mean axial trace of the minor fold group of NE-SW or NNE-SSW trend $(F_2)$ is $N21^{\circ}E$, and the directional trace of ${\sigma}_1$ is $N22^{\circ}W$.

  • PDF

Practical visualization of discontinuity distribution in subsurface using borehole image analysis (시추공영상분석을 이용한 지하 불연속면 분포의 가시화 실용연구)

  • 송무영;박찬석
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2002
  • Borehole image analysis has been carried out to obtain the detailed geological data by approach of direct observation. Direct application of borehole image analysis inevitably gives rise to a few of restriction of data acquisition due to the limited information within narrow borehole space. Considering the apparent dip of discontinuity surface depending upon the direction, the visualized program of two-dimensional subsurface discontinuities is coded. Borehole image analysis can compensate the distribution of subsurface discontinuity extending into the expected area of investigation. In order to draw subsurface profile in the proposed area of subsurface construction, visualized program is coded as a window GUI (Graphic User Interface) using Fortran and Visual Basic Programming languages. It is to open publicly for the usage of whoever is in want. Discontinuity distribution map is visualized along the Proposed line of tunnel in the Janggye-ri area, Jangsu-gun. Using the visualized program, the limited information from borehole spatially applies into analysis of overall subsurface structures, and the distributional characteristics of discontinuity anticipate at the proposed area. In addition, spacing and extension of joint and depth of discontinuity effecting tunnel safety can be visualized along the direction of the proposed tunnel. These lines of visualization apply design and construction of fundanmental structures.

Clinical Usefulness of Ambulatory Blood Pressure Monitoring in Children and Adolescents (소아 및 청소년에서 24시간 활동 혈압 측정의 임상적 유용성)

  • Hwang, Young-Ju;Park, Hyo-Jung;Yang, Eun-Ae;Cho, Min-Hyun;Ko, Cheol-Woo;Yang, Dong-Heon;Hwang, Hyun-Hee
    • Childhood Kidney Diseases
    • /
    • v.15 no.2
    • /
    • pp.154-162
    • /
    • 2011
  • Purpose: With increasing prevalence of hypertension (HTN) in children and adolescent, pediatricians have become more interested in blood pressure (BP) measurements. The ambulatory blood pressure monitoring (ABPM) is known to be useful to differentiate true HTN and white coat HTN. The object of this study is to assess the clinical usefulness of ABPM in Korean children and adolescents. Methods: A retrospective review of 51 patients in Kyungpook National University Hospital from January 2002 to February 2010 was done. All patients were 6-18 years old and underwent ABPM. We calculated the mean value of ABP, BP load, nocturnal dip and compared the results with the patients' diagnosis and characteristics. Results: The mean age of the 51 patients was $17.8{\pm}1.8$ years and 19 children were obese. 37 patients (72.5%) were truly hypertensive and 1 patient was diagnosed as masked HTN and 7 children (14%) as white coat HTN. The rest of the patients were normotensive. Among patients with white coat HTN, 5 were in a prehypertensive state. Mean systolic and diastolic BP load of patients with true HTN were significantly higher than non-hypertensive children (P<0.001). Although the nocturnal dip of all patients were below 10%, there was no statistical significance. The obese patients showed higher systolic and diastolic BP. Their systolic and diastolic BP load were significantly higher than non-obese patients (P<0.001). Conclusion: ABPM in children and adolescents seems to be a valuable tool in the assessment of white coat HTN and in the confirmation of true HTN. A considerable number of white coat HTN patients are revealed to be in a prehypertensive state and need close follow-up.

A Survey on the Actual State of Laboratory Facilities and Equipments at Nursing Schools (간호교육기관의 실험실습설비 보유실태 조사)

  • Lim, N.Y.;Lee, S.O.;Suh, M.J.;Kim, H.S.;Kim, M.S.;Oh, K.O.
    • The Korean Nurse
    • /
    • v.36 no.1
    • /
    • pp.108-117
    • /
    • 1997
  • This study was carried out to examine the standards for evaluation of laboratory facilities and equipment. These constitute the most important yet vulnerable area of our system of higher education among the six school evaluation categories provided by the Korean Council for University Education. To obtain data on the present situation of holdings and management of laboratory facilities and equipment at nursing schools in Korea, questionnaires were prepared by members of a special committee of the Korea Nursing Education Society on the basis of the Standards for University Laboratory Facilities and Equipment issued by the Ministry of Education. The questionnaires were sent to nursing schools across the nation by mail on October 4, 1995. 39 institutions completed and returned the questionnaires by mail by December 31 of the same year. The results of the analysis of the survey were as follows: 1. The Physical Environment of Laboratories According to the results of investigation of 14 nursing departments at four-year colleges, laboratories vary in size ranging from 24 to 274.91 pyeong ($1{\;}pyeong{\;}={\;}3.3m^2).$. The average number of students in a laboratory class was 46.93 at four-year colleges, while the number ranged from 40 to 240 in junior colleges. The average floor space of laboratories at junior colleges, however, was almost the same as those, of laboratories at four-year colleges. 2. The Actual State of Laboratory Facilities and Equipment Laboratory equipment possessed by nursing schools at colleges and universities showed a very wide distribution by type, but most of it does not meet government standards according to applicable regulations while some types of equipment are in excess supply. The same is true of junior colleges. where laboratory equipment should meet a different set of government standards specifically established for junior colleges. Closer investigation is called for with regard to those types of equipment which are in short supply in more than 80 percent of colleges and universities. As for the types of equipment in excess supply, investigation should be carried out to determine whether they are really needed in large quantities or should be installed. In many cases, it would appear that unnecessary equipment is procured, even if it is already obsolete, merely for the sake of holding a seemingly impressive armamentarium. 3. Basic Science Laboratory Equipment Among the 39 institutions, five four-year colleges were found to possess equipment for basic science. Only one type of essential equipment, tele-thermometers, and only two types of recommended equipment, rotators and dip chambers, were installed in sufficient numbers to meet the standards. All junior colleges failed to meet the standards in all of equipment categories. Overall, nursing schools at all of the various institutions were found to be below per in terms of laboratory equipment. 4. Required Equipment In response to the question concerning which type of equipment was most needed and not currently in possession, cardiopulmonary resuscitation (CPR) machines and electrocardiogram (ECG) monitors topped the list with four respondents each, followed by measuring equipment. 5. Management of Laboratory Equipment According to the survey, the professors in charge of clinical training and teaching assistants are responsible for management of the laboratory at nursing schools at all colleges and universities, whereas the chief of the general affairs section or chairman of the nursing department manages the laboratory at junior colleges. This suggests that the administrative systems are more or less different. According to the above results, laboratory training could be defined as a process by which nursing students pick up many of the nursing skills necessary to become fully qualified nurses. Laboratory training should therefore be carefully planned to provide students with high levels of hands-on experience so that they can effectively handle problems and emergencies in actual situations. All nursing students should therefore be thoroughly drilled and given as much on-the-job experience as possible. In this regard, there is clearly a need to update the equipment criteria as demanded by society's present situation rather than just filling laboratory equipment quotas according to the current criteria.

  • PDF