• 제목/요약/키워드: Truck-trailer system

검색결과 23건 처리시간 0.023초

TSK 퍼지시스템을 이용한 트럭-트레일러의 후진 제어 (Backing up Control of a Truck-Trailer using TSK Fuzzy System)

  • 김종화;이원창;강근택
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.133-136
    • /
    • 2003
  • This paper presents a fuzzy control scheme for backing up control of Truck-Trailer, which is nonlinear and unstable by using TSK(Takagi-Sugeno-kang) fuzzy system. The nonlinear system of Truck-Trailer was expressed by using TSK fuzzy model, and the TSK fuzzy controller was designed from TSK fuzzy model. The usefulness of the proposed algorithm for backing up truck-trailer is certificated by the computer simulations.

  • PDF

퍼지이론을 이용한 컨테이너 트레일러ㆍ트럭의 주차제어 (Parking Control for a Container Trailer Truck Using Fuzzy Theory)

  • 박계각
    • 한국항해학회지
    • /
    • 제23권2호
    • /
    • pp.1-9
    • /
    • 1999
  • A trailer truck is a major equipment for transporting containers, and its driving is difficult due to two degrees of freedom which exist in the joint part between truck and trailer. Especially Backing a trailer truck to a parking home is a difficult exercise for all but the most skilled truck drivers. Normal driving instincts lead to erroneous movements. When watching a truck driver backing toward a parking home, one often observes the driver backing, going forward, backing again, going forward, etc., and finally backing to the desired position along the parking home. This paper discusses the design of the controller to control the steering of a trailer truck while only backing up to a parking home from an initial position. In this paper, we propose a backing up control system for a container trailer truck using fuzzy theory where the primitive fuzzy control rules are macroscopically designed using an expert's knowledge, and the control rules are regulated by LIBL(Linguistic Instruction Based Learning) to enable to back up successfully the trailer tuck to a parking home from arbitrary initial position. The validity of the proposed parking control system is shown by applying it to some initial positions on the simulator for container trailer truck.

  • PDF

대형 트레일러 차량의 범프 통과 시 유연다물체 동역학 해석 (Multi-flexible Body Dynamic Analysis of a Heavy Trailer Vehicle Passing a Bump)

  • 김정윤;김흥수;김진곤
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.40-45
    • /
    • 2009
  • This article deals with the transient analysis using multi-flexible body dynamics of a trailer vehicle, which is passing a bump on the flat road. In order to investigate the transient dynamic behavior of the trailer, we developed an equivalent finite element model for the trailer and a vehicle dynamic model for the truck using multi-body dynamics. The driving condition considered here is set as the trailer vehicle passes a bump on the flat road in 7km/h. And we investigate the time histories of vertical load and deflections on connecting points between the trailer and truck during the vehicle passes a bump. Due to the dynamic load resulted from the driving condition, additional stress concentrations are found in the trailer and the suspension connecting points between the trailer and rear axles along with kingpin.

  • PDF

A Study on the Economical Feasibility Analysis For Development of Dual Mode Trailer System

  • Kim, Kwang-Hee
    • 한국항해항만학회지
    • /
    • 제34권2호
    • /
    • pp.137-144
    • /
    • 2010
  • In light of the growing traffic congestion problem and congestion cost, the container transport by railway has to be increased. The freight transport by railway can have decided advantages over trucks in terms of energy efficiency, emissions and cost for certain freight movements, just as transportation in the metropolitan region can have great advantages over driving truck. But the freight transport by truck should gain significant mobility benefits from a freight railway system. Thus, the DMT(Dual Mode Trailer) transport system which is coupled railway transport advantages with load transport advantages has been developed and used in the european countries. The DMT transport will therefore serve the areas required by transport organizers. The purpose of this paper is to estimate economical feasibility analysis for development of DMT transport system. Consequently, this study analyzed the characteristics of the DMT system. The horizontal load.unload system is being considered as an adoptable DMT system in consideration of the situation in Korea.

Back-up Control of Truck-Trailer Vehicles with Practical Constraints: Computing Time Delay and Quantization

  • Kim, Youngouk;Park, Jinho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권6호
    • /
    • pp.391-402
    • /
    • 2015
  • In this paper, we present implementation of backward movement control of truck-trailer vehicles using a fuzzy mode-based control scheme considering practical constraints and computational overhead. We propose a fuzzy feedback controller where output is predicted with the delay of a unit sampling period. Analysis and design of the proposed controller is very easy, because it is synchronized with sampling time. Stability analysis is also possible when quantization exists in the implementation of fuzzy control architectures, and we show that if the trivial solution of the fuzzy control system without quantization is asymptotically stable, then the solutions of the fuzzy control system with quantization are uniformly ultimately bounded. Experimental results using a toy truck show that the proposed control system outperforms a conventional system.

Stability Analysis of the Optimal Semi-Trailer Vehicles

  • Mongkolwongrojn, M.;Campanyim, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.248-251
    • /
    • 2004
  • Stability of truck and trailer are the most significance in Thai automotive industry. This paper presents the mathematical model of a six-degree-of-freedom semi-trailer vehicle. Search method was implemented to obtain the optimum design variables of the trailer which are the distance from the fifth wheel to the centroid of the trailer and the distance from the centroid of the trailer to the trailer axel. The objective function is to minimize the steady side slip velocity, steady-state yawing velocity and steady-state angle between the tractor and the trailer. From the calculation , the optimum distance from the fifth wheel to the centroid of the trailer and the optimum distance from the centroid of the trailer to the trailer axle are 5.50 and 3.25 meters respectively. The stability of the optimal semi-trailer vehicle was also examined in steady state. The steady side slip velocity, yawing velocity and the angle between tractor and trailer are also obtained using linearization technique under unit step disturbance of the tractor front wheel steering angle.

  • PDF

Hybrid Controller of Neural Network and Linear Regulator for Multi-trailer Systems Optimized by Genetic Algorithms

  • Endusa, Muhando;Hiroshi, Kinjo;Eiho, Uezato;Tetsuhiko, Yamamoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1080-1085
    • /
    • 2005
  • A hybrid control scheme is proposed for the stabilization of backward movement along simple paths for a vehicle composed of a truck and six trailers. The hybrid comprises the combination of a linear quadratic regulator (LQR) and a neurocontroller (NC) that is trained by a genetic algorithm (GA). Acting singly, either the NC or the LQR are unable to perform satisfactorily over the entire range of the operation required, but the proposed hybrid is shown to be capable of providing good overall system performance. The evaluation function of the NC in the hybrid design has been modified from the conventional type to incorporate both the squared errors and the running steps errors. The reverse movement of the trailer-truck system can be modeled as an unstable nonlinear system, with the control problem focusing on the steering angle. Achieving good backward movement is difficult because of the restraints of physical angular limitations. Due to these constraints the system is impossible to globally stabilize with standard smooth control techniques, since some initial states necessarily lead to jack-knife locks. This paper demonstrates that a hybrid of neural networks and LQR can be used effectively for the control of nonlinear dynamical systems. Results from simulated trials are reported.

  • PDF

DNA 코딩 기반의 하이브리드 알고리즘을 이용한 Truck-Trailer Backing Problem의 퍼지 모델링 (Fuzzy Modeling of Truck-Trailer Backing Problem Using DNA Coding-Based Hybrid Algorithm)

  • 김장현;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2314-2316
    • /
    • 2000
  • In the construction of successful fuzzy models and/or controllers for nonlinear systems, identification of a good fuzzy Neural inference system is an important yet difficult problem, which is traditionally accomplished by trial and error process. In this paper, we propose a systematic identification procedure for complex multi-input single- output nonlinear systems with DNA coding method.DNA coding method is optimization algorithm based on biological DNA as are conventional genetic algothms (GAs). We also propose a new coding method for applying the DNA coding method to the identification of fuzzy Neural models. To acquire optimal TS fuzzy model with higher accuracy and economical size, we use the DNA coding method to optimize the parameters and the number of fuzzy inference system.

  • PDF

트럭-트레일러 타입의 모바일로봇을 위한 귀환 제어기 설계 (Digital Implementation of Backing up control of Truck-trailer type Mobile Robots)

  • 구자일;박창우
    • 전자공학회논문지 IE
    • /
    • 제46권2호
    • /
    • pp.33-45
    • /
    • 2009
  • 본 논문은 실제적인 제약, 컴퓨팅 시간 지연, 양자화를 고려하여 퍼지 모델을 기초로 한 제어기를 트럭-트레일러 타입의 모바일 로봇의 귀환 제어기에 적용하여 설계하였다. 퍼지 귀환 제어기의 출력은 단위 샘플링 시간동안 지연되므로 이를 예측하여 설계하였다. 시간 지연을 고려한 해석 및 디자인 문제는 제안된 제어기가 샘플링 시간과 동기되어 있기 때문에 쉽게 해결된다. 또한 퍼지 제어기 구조 개발 시 양자화가 이루어지기 때문에 안정성 있는 해석이 가능하고 양자화 이외에 발생하는 사소한 문제도 역시 안정함을 보여주므로, 양자화한 시스템은 일반적으로는 극단적인 수렴을 한다. 실험결과에서 제안된 시스템의 효율성이 증명됨을 볼 수 있다.

틸팅 시스템을 장착한 트레일러의 전복임계속도 특성 (Characteristics of the Rollover Critical Speed of a Trailer Equipped with a Tilting System)

  • 정태건
    • 한국산학기술학회논문지
    • /
    • 제19권2호
    • /
    • pp.64-70
    • /
    • 2018
  • 대형트럭으로 견인되는 트레일러는 무게중심이 일반 차량에 비해 상대적으로 높기 때문에 전복사고 위험이 높게 된다. 곡선 주행 구간에서 차체를 기울여 곡선부의 주행속도를 향상시키는 원리를 적용하는 틸팅 시스템은 고속철도 차량에서 먼저 그 개념이 연구되고 사용되어 왔는데, 이 논문에서는 일반 대형트럭의 트레일러 적재함에 이 틸팅 시스템을 적용함으로써 아주 작은 틸팅각의 변화로도 급회전 시 주행 안정성을 크게 개선할 수 있는 가능성에 대해 연구하였다. 틸팅 가능한 트레일러의 동역학적 모델을 사용하여 선회주행 시 운동 관계식을 유도함으로써 주어진 도로 선회반경과 하중조건에 대해 원심력 효과와 수직력의 균형으로 전복임계속도를 결정할 수 있었다. 본 논문에서는 보수적인 기준을 선택하여 한쪽 바퀴가 지면으로부터 떨어지는 순간을 전복임계상태로 정의하였다. 실제로 틸팅 시스템을 작동시키기 위해서는 조향각과 주행속도로부터 최적 틸팅각을 계산해야 한다. 트레일러가 달린 대형트럭을 간단하게 모델링하고 시뮬레이션을 통해 곡선주행시 차량의 틸팅각에 따른 전복임계속도의 변화를 분석하고, 틸팅의 효과를 입증하였다.