• Title/Summary/Keyword: Tropospheric delay error

Search Result 31, Processing Time 0.026 seconds

Preliminary Analysis of Precise Point Positioning Performance Using Correction of Tropospheric Delay Gradient

  • Bu-Gyeom Kim;Changdon kee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.141-148
    • /
    • 2023
  • In this paper, impacts of tropospheric delay gradient correction on PPP positioning performance were analyzed. A correction for tropospheric delay error due to the gradient was created and applied using external data, and reference station data were collected on a sunny day and a rainy day to analyze the GPS only dual-frequency PPP positioning results. As a result, on the sunny day, the convergence time was about 35 minutes and the final 3D position error was 10 cm, regardless of whether the correction for the tropospheric delay error by the gradient was applied. On the other hand, on the rainy day, the 3D position error converges only when the correction was applied, and the convergence time was about 34 minutes. Furthermore, the final 3D position error was improved from 30 cm to 10 cm. In addition, the analysis of the PPP by reference station location on the rainy day showed that the PPP positioning performance was improved when the correction was applied to a user located in an area where the weather changes.

Performance Analysis of Low-Order Surface Methods for Compact Network RTK: Case Study

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Compact Network Real-Time Kinematic (RTK) is a method that combines compact RTK and network RTK, and it can effectively reduce the time and spatial de-correlation errors. A network RTK user receives multiple correction information generated from reference stations that constitute a network, calculates correction information that is appropriate for one's own position through a proper combination method, and uses the information for the estimation of the position. This combination method is classified depending on the method for modeling the GPS error elements included in correction information, and the user position accuracy is affected by the accuracy of this modeling. Among the GPS error elements included in correction information, tropospheric delay is generally eliminated using a tropospheric model, and a combination method is then applied. In the case of a tropospheric model, the estimation accuracy varies depending on the meteorological condition, and thus eliminating the tropospheric delay of correction information using a tropospheric model is limited to a certain extent. In this study, correction information modeling accuracy performances were compared focusing on the Low-Order Surface Model (LSM), which models the GPS error elements included in correction information using a low-order surface, and a modified LSM method that considers tropospheric delay characteristics depending on altitude. Both of the two methods model GPS error elements in relation to altitude, but the second method reflects the characteristics of actual tropospheric delay depending on altitude. In this study, the final residual errors of user measurements were compared and analyzed using the correction information generated by the various methods mentioned above. For the performance comparison and analysis, various GPS actual measurement data were collected. The results indicated that the modified LSM method that considers actual tropospheric characteristics showed improved performance in terms of user measurement residual error and position domain residual error.

Accuracy Verification of the SBAS Tropospheric Delay Correction Model for the Korean Region (한반도 지역 SBAS 대류층 지연 보정 모델의 정확도 검증)

  • Kim, Dong-uk;Han, Deok-hwa;Kee, Chang-don;Lee, Chul-soo;Lee, Choong-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • In this paper, we verified accuracy of the satellite based augmentation system (SBAS) tropospheric delay correction model for the Korean region. We employed the precise data of the tropospheric zenith path delay (ZPD) which is provided by the international GNSS service (IGS). In addition, we compared the verification results with that of the Saastamoinen model and the Hopfield model. Consequently, the bias residual error of the SBAS tropospheric delay correction model is about 50 mm, whereas the Saastamoinen model and the Hopfield model are more accurate. This residual error by the tropospheric delay model can affect the SBAS user position accuracy, but there is no problem in SBAS accuracy requirement. If we modified the meteorological parameters for SBAS tropospheric model to appropriate in Korean weather environment, we can provide better SBAS service to the Korean user.

Compensation Method of Tropospheric Delay Model Error for Ground Navigation using Meteorological Data in Korea (한반도 기상데이터를 이용한 지상항법 대류권 지연 오차 보상기법)

  • So, Hyoungmin;Lee, Kihoon;Park, Junpyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 2016
  • Tropospheric delay is one of the largest error source in pseudolite navigation system. Because a pseudolite is installed on the ground and transmits its signal to a user in the air or on the ground, the conventional tropospheric delay model developed for a satellite navigation doesn't work properly. In this paper, performance analysis of several pseudolite tropospheric delay models has been done using meteorological data. Based on the result, a new compensation method for Hopfield model has been proposed.

Variogram Estimation of Tropospheric Delay by Using Meteorological Data

  • Kim, Bu-Gyeom;Kim, Jong-Heon;Kee, Changdon;Kim, Donguk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.271-278
    • /
    • 2021
  • In this paper, a tropospheric delay error was calculated by using meteorological data collect from weather station and Saastamoinen model, and an empirical variogram of the tropospheric delay in the Korean peninsula was estimated. In order to estimate the empirical variogram of the tropospheric delay according to weather condition, sunny day, rainy day, and typhoon day were selected as analysis days. Analysis results show that a maximum correlation range of the empirical variogram on sunny day was about 560 km because there is overall trend of the tropospheric delay. On the other hand, the maximum correlation range of the empirical variogram on rainy was about 150 km because the regional variation was large. Although there is regional variation when the typhoon exists, there is a trend of the tropospheric delay due to a movement of the typhoon. Therefore, the maximum correlation range of the empirical variogram on typhoon day was about 280 km which is between sunny and rainy day.

Tropospheric Anomaly Detection in Multi-Reference Stations Environment during Localized Atmospheric Conditions-(2) : Analytic Results of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.271-278
    • /
    • 2016
  • Localized atmospheric conditions between multi-reference stations can bring the tropospheric delay irregularity that becomes an error terms affecting positioning accuracy in network RTK environment. Imbalanced network error can affect the network solutions and it can corrupt the entire network solution and degrade the correction accuracy. If an anomaly could be detected before the correction message was generated, it is possible to eliminate the anomalous satellite that can cause degradation of the network solution during the tropospheric delay anomaly. An atmospheric grid that consists of four meteorological stations was used to detect an inhomogeneous weather conditions and tropospheric anomaly applied AWSs (automatic weather stations) meteorological data. The threshold of anomaly detection algorithm was determined based on the statistical weather data of AWSs for 5 years in an atmospheric grid. From the analytic results of anomaly detection algorithm it showed that the proposed algorithm can detect an anomalous satellite with an anomaly flag generation caused tropospheric delay anomaly during localized atmospheric conditions between stations. It was shown that the different precipitation condition between stations is the main factor affecting tropospheric anomalies.

Performance Analysis of Pseudolite Tropospheric Delay Models Using Radiosonde Meteorological Data

  • So, Hyoungmin;Park, Junpyo;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • When pseudolite navigation system is applied to wide area, the tropospheric delay is the main error factor. In this study, we experimentally compared and analyzed the performance of the conventional pseudolite tropospheric delay models. The integration method using radiosonde meteorological data was suggested to derive the reference value for the comparison and analysis. Flight tests were carried out to analyze the performance of the tropospheric delay models according to the elevation angle and distance conditions between the user receiver and the pseudolite. As the results of this study, we provided the basis for the choice of tropospheric delay model appropriate to the relative location characteristics of the pseudolite and the user.

Tropospheric Anomaly Detection in Multi-reference Stations Environment during Localized Atmosphere Conditions-(1) : Basic Concept of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.265-270
    • /
    • 2016
  • Extreme tropospheric anomalies such as typhoons or regional torrential rain can degrade positioning accuracy of the GPS signal. It becomes one of the main error terms affecting high-precision positioning solutions in network RTK. This paper proposed a detection algorithm to be used during atmospheric anomalies in order to detect the tropospheric irregularities that can degrade the quality of correction data due to network errors caused by inhomogeneous atmospheric conditions between multi-reference stations. It uses an atmospheric grid that consists of four meteorological stations and estimates the troposphere zenith total delay difference at a low performance point in an atmospheric grid. AWS (automatic weather station) meteorological data can be applied to the proposed tropospheric anomaly detection algorithm when there are different atmospheric conditions between the stations. The concept of probability density distribution of the delta troposphere slant delay was proposed for the threshold determination.

Estimation of Tropospheric Zenith Delay over the Seoul-Jecheon area using GPS (GPS를 이용한 서울-제천 지역의 대류층 천정 지연 평가)

  • Kwon, Young-Cheol;Han, Uk;Park, Pil-Ho
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.380-388
    • /
    • 2000
  • The estimation of tropospheric zenith delay over the Seoul-Jecheon area using GPS is presented. Over the past ten years, the world-wide industrial nations have been intensively concerned over increasing GPS surveyings in the various fields of earth science. To preserve precise positioning under various weather conditions, relationships between tropospheric zenith delay and GPS accuracy are analyzed. GPS accuracies are compared with tropospheric zenith delay produced by Bernese 4.0 software. Errors of tropospheric delay are 20cm in mean and reduced up to 5cm when tropospheric correction models are used. Correlation between error of GPS and tropospheric zenith delay plays a positive role to monitor the migration of weather front in the established Korean GPS network.

  • PDF

Estimation of GNSS Zenith Tropospheric Wet Delay Using Deep Learning (딥러닝 기반 GNSS 천정방향 대류권 습윤지연 추정 연구)

  • Lim, Soo-Hyeon;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.23-28
    • /
    • 2021
  • Data analysis research using deep learning has recently been studied in various field. In this paper, we conduct a GNSS (Global Navigation Satellite System)-based meteorological study applying deep learning by estimating the ZWD (Zenith tropospheric Wet Delay) through MLP (Multi-Layer Perceptron) and LSTM (Long Short-Term Memory) models. Deep learning models were trained with meteorological data and ZWD which is estimated using zenith tropospheric total delay and dry delay. We apply meteorological data not used for learning to the learned model to estimate ZWD with centimeter-level RMSE (Root Mean Square Error) in both models. It is necessary to analyze the GNSS data from coastal areas together and increase time resolution in order to estimate ZWD in various situations.