• Title/Summary/Keyword: Trophic State

Search Result 143, Processing Time 0.032 seconds

Ecological Study of Copepoda Community in the Lower Seomjin River System, Korea (섬진강 하류계의 요각류 군집에 관한 생태학적 연구)

  • Kim, Kwang-Soo;Lee, Jong-Bin;Lee, Kwan-Sik;Kang, Jang-Won;Yoo, Hyung-Bin
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.176-186
    • /
    • 2000
  • The present study was carried out to clarify the structure and dynamics of copepod community and the relationship between this community and environmental factors during the period from February 1998 to July 1999. Copepods consists of 21 genera and 32 species, monthly variations of number of species were 15 species in May, 1998 and 2 species November, 1998. The number of species were 22 species in station 12 and station 1, 2, 3 occurred nauplii of copepoda only. Average abundance ranged from $8,330\;ind./m^3$ (in June, 1999) to $177\;ind./m^3$ (in November, 1998). Relationships between water temperature and number of species were as follows: 20 species occurred from 20.1 to $25.0^{\circ}C$ and nuplii of copepoda only occurred from 0.0 to $5.0^{\circ}C$. The number of species by salinity range were 19 species in $20.1{\sim}25.0%_o$ and 9 species in $0{\sim}0.5%_o$. The number of species by trophic state index (TSIm) of chlorophyll a were 25 species in oligotrophic state and 9 species in eutrophic state. Relationships between pH and number of species were as follows: 20 species occurred from 7.6 to 8.0 and from 9.1 to 9.5 was none. The number of species by DO range were 22 species in 6.5 to 7.5 mg/l and 1 species in 14.5 to 15.5 mg/l. The percentage calculated effect by stepwise multiple regression of the pearson correlation coefficient value of environmental factors and copepoda abundance (station 1-station 4) revealed that positive effect was 15.49% in COD, 25.86% in $Cl^-$, 19.75% in $NO_2-N$ and negative effect was 28.30% in $NO_3-N$. Also, Positive effect (station 5-station 12) revealed that 29.49% in water temperature, 28.27% in $NO_3-N$, 22.87% in $NO_2-N$ and negative effect was 30.18% in conductivity and 13.53% in DO.

  • PDF

Zooplankton Community as an Indicator for Environmental Assessment of Aquatic Ecosystem: Application of Rotifer Functional Groups for Evaluating Water Quality in Eutrophic Reservoirs (동물플랑크톤 군집의 수생태계 환경 평가 지표 활용: 부영양화 저수지 수질 평가를 위한 윤충류 기능성 그룹의 적용)

  • Oh, Hye-Ji;Chang, Kwang-Hyeon;Seo, Dong-Il;Nam, Gui-Sook;Lee, Eui-Haeng;Jeong, Hyun-Gi;Yoon, Ju-Duk;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.404-417
    • /
    • 2017
  • In this study, we analyzed response patterns of rotifer community to eutrophic state, and estimated the applicability of rotifer community as an environmental indicator for highly eutrophicated reservoirs. In order to evaluate the relationships among spatial and temporal distributions and the water quality of rotifer community, we selected the Jundae Reservoir and Chodae Reservoir in Chungcheongnam-do, Korea, which are geographically adjacent but have different water quality, particularly in their eutrophic states. For the analyses on their correlations, monthly survey of water quality and rotifer community, was conducted from April to November 2013 in both reservoirs. The rotifer community was divided into different compositions of functional groups as well as species. Functional groups were classified according to the structure and shape of trophi which can represent feeding behavior of rotifer genus. To reflect ecological characteristics of species, body size and habitat preferences were also considered. Species-based composition did not show a consistent tendency with water quality parameters related with eutrophication. On the contrary, functional group composition showed relatively clear group-specific patterns, increasing or decreasing according to the parameters. The results suggest the possible application of rotifer functional group composition as an indicatorforthe lentic systems, especially hyper-eutrophicated reservoirs. The present study can suggest the applicability based on the field observations from the limited time scale and sites, and further studies on feeding behavior of the rotifer functional group and its interactions with environmental variables are necessary for the further application.

Eutrophication in the Upper Regions of Brackish Lake Sihwa with a Limited Water Exchange (물 교환이 제한적인 시화호 상류 기수역의 부영양화)

  • Choi, Kwnag-Soon;Kim, Sea-Won;Kim, Dong-Sup;Heo, Woo-Myoung;Lee, Yun-Kyoung;Hwang, In-Seo;Lee, Han-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.216-227
    • /
    • 2008
  • To understand eutrophication in the upper regions of brackish Lake Sihwa with a limited water exchange, temporal and spatial distributions of pollutants in water and sediment were investigated from March to October in 2005 and 2006. Also, pollution levels of water and sediment were estimated by trophic state index (TSI) and sediment quality guideline (SQG). Total nitrogen (TN), total phosphorus (TP), organic matter (COD), and chlorophyll $\alpha$ (Chl-$\alpha$) concentrations in the surface waters were largely varied temporally and spatially, and the variations were highest in the middle areas where strong halocline was formed. Chl-$\alpha$ concentrations in the middle area were very high in April (>$900\;{\mu}g\;L^{-1}$) when algal blooms (red tides) occurred. The relationships between TN and Chl-$\alpha$ (r=0.31), and TP and Chl-$\alpha$ (r=0.65) indicated that the algal growth was primarily affected by phosphorus rather than nitrogen. The distribution of COD was similar to that of Chl-$\alpha$, indicating that the autochthonous organic matters may be a more important carbon source, especially in the middle areas. The brackish water regions were classified as eutrophic or hypertrophic based on their TSI values ($69{\sim}76$). In addition, the content of nutrients (especially TP) in surface sediments were classified as severe polluted state, except the upper areas. Major causes of the eutrophication observed were probably due to high nutrients loading from watersheds, the phosphorus release from anaerobic sediment, and long retention time by the limited water exchange through the sluice gates.

Water Quality and Ecosystem Health Assessments in Urban Stream Ecosystems (도심하천 생태계에서의 수질 및 생태건강성 평가)

  • Kim, Hyun-Mac;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.311-322
    • /
    • 2008
  • The objectives of the study were to analyze chemical water quality and physical habitat characteristics in the urban streams (Miho and Gap streams) along with evaluations of fish community structures and ecosystem health, throughout fish composition and guild analyses during 2006$\sim$2007. Concentrations of BOD and COD averaged 3.5 and 5.7 mg L$^{-1}$, in the urban streams, while TN and TP averaged 5.1 mg L$^{-1}$ and 274 ${\mu}g$ L$^{-1}$, indicating an eutrophic state. Especially, organic pollution and eutrophication were most intense in the downstream reach of both streams. Total number of fish was 34 species in the both streams, and the most abundant species was Zacco platypus (32$\sim$42% of the total). In both streams, the relative abundance of sensitive species was low (23%) and tolerant and omnivores were high (45%, 52%), indicating an typical tolerance and trophic guilds of urban streams in Korea. According to multi-metric models of Stream Ecosystem Health Assessments (SEHA), model values were 19 and 24 in Miho Stream and Gap Stream, respectively. Habitat analysis showed that QHEI (Qulatitative Habitat Evaluation Index) values were 123 and 135 in the two streams, respectively. The minimum values in the SEHA and QHEI were observed in the both downstreams, and this was mainly attributed to chemical pollutions, as shown in the water quality parameters. The model values of SEHA were strongly correlated with conductivity (r=-0.530, p=0.016), BOD (r=-0.578, p< 0.01), COD (r=-0.603, p< 0.01), and nutrients (TN, TP: r>0.40, p<0.05). This model applied in this study seems to be a useful tool, which could reflect the chemical water quality in the urban streams. Overall, this study suggests that consistent ecological monitoring is required in the urban streams for the conservations along with ecological restorations in the degradated downstrems.

Water Quality and Chlorophyll-a at the Birth Stage of a Large Reclaimed Estuarine Lake in Korea (Lake Hwaong) (간척하구호 (화옹호) 태동기의 수질과 엽록소-a 변화)

  • Kim, Ho-Sub;Chung, Mi-Hee;Choi, Chung-Il;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.455-462
    • /
    • 2003
  • This study evaluated the change of water quality and chlorophyll - a at the birth stage of a large reclaimed estuarine lake (Lake Hwaong) of which the dike was finally constructed in March, 2002. Physico -chemical parameters and chlorophyll - a were investigated along a longitudinal transect, including 3 in-lake sites and 1 out-lake site from June to November, 2002. Salinity at all in-lake sites was over 21 psu during the study period, indicating that lake is still in the seawater phase. Salinity was periodically diluted at times when precipitation was high, especially in August. Chemocline was established in July near the dam site, and correspondingly vertical profile of dissolved oxygen was very clear during that Period. Total nitrogen and phosphorus concentrations at all lake sites were in the eutrophic range, and they were especially high at the stream inlet site. Nutrients concentration was not much varied vertically but significantly varied temporally, and correlated significantly with precipitation and chlorophyll-a concentration, indicating that inflowing water from the watershed seemed not to improve lake water by dilution but cause eutrophication of the lake, and thereby stimulate phytoplankton development. Based on the analyses of nutrient ratio (N/P) and trophic state deviation, both phosphorus and nitrogen appeared to limit phytoplankton growth in the lake. Phosphorus limitation appeared to be probable at all in-lake sites with being most severe at the stream inlet site. Nitrogen limitation seemed to occur at both in-lake and out-lake sites. These results indicate that in Lake Hwaong experiencing the very early stage of a reclaiming lake, water quality and phytoplankton development appear to be affect-ed largely by salinity and hydrology and nutrients from the inflowing water. Lake biogeochemistry is still very unstable, and thus further long-term study is necessary to understand the effects of seawater to freshwater conversion on lake biology and water chemistry.

The Limnological Survey of a Coastal Lagoon in Korea (2): Lake Hyangho (동해안 석호의 육수학적 조사(2): 향호)

  • Kwon, Sang-Yong;Lee, Jae-Il;Kim, Dong-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.1-11
    • /
    • 2004
  • The limnological characteristics of a coastal lagoon were studied in Lake Hyangho, one of a series of brackish lagoons along the eastern coast of Korea. Phytoplankton community structure, physical factors, and chemical factors were surveyed from May 1998 through November 2002 on a two-month interval basis. Temperature, salinity, Secchi disc transparency, TN, TP, organic matter content of sediment, chlorophyll a concentration, dominant phytoplankton species, and phytoplankton cell density were measured. Salinity gradient was formed between the overlying freshwater stream water and the permeated seawater at the bottom. The chemocline was persistent at the depth of 2 ${\sim}$ 5 m that caused discontinuities of salinity, DO, and temperature profiles. The inversion of vertical temperature profiles with higher temperature in deeper layer was observed in early winter. Secchi disc transparency was very low with the range of 0.1 to 1.1m. TP, TN, and Chl. a concentration in the epilimnion was 0.011 ${\sim}$ 0.238 mgP $L^{-l}$, 0.423 ${\sim}$ 2.443 mgN $L^{-l}$, and 0.7 ${\sim}$ 145.2 mg $m^{-3}$, respectively. Sediment was composed of silt and coarse silt. COD, TP, and TN content of dry sediment were 19.7 ${\sim}$ 73.3 mg$O_2\;g^{-1}$, 0.61 ${\sim}$ 1.32 mgP $g^{-l}$ and 0.64 ${\sim}$ 0.88 mgN $g^{-l}$, respectively. Dominant phytoplankton species were chlorophytes (Ankistrodesmus falcatus) and cyanobacteria (Oscillatoria sp. and Merismopedia tennuissima). The total cell density was in the range of 560 ${\sim}$ 35,255 cells $mL^{-l}$.

Water Quality and Structure of Aquatic Ecosystem in Water Source, Lake Gachang (상수원 호소인 가창호의 수질과 수생태계의 계절적 변화)

  • Park, Yeon-Jeong;Lee, Hae-Jin;Seo, Jung-Kwan;Tak, Bo-Mi;Jeong, Hyun-Gi;Lee, Jae-Kwan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.296-304
    • /
    • 2011
  • This study was carried out to investigate the relation between water quality and structure of the aquatic ecosystem in the Lake Gachang from February to December in 2010. The annual mean COD (Chemical Oxygen Demand) in Lake Gachang was 3.5 mg $L^{-1}$, indicating, level II of environmental standards and the trophic state was mesotrophic. The seasonal succession of phytoplankton showed that Bacillariophyceae was mostly dominant species throughout the year except August. In case of zooplankton, rotifers dominate in the most seasons, but copepod (Nauplii) in August. The macrophyte plants showed diverse species composition consisted of 9 varieties, 77 species, 64 genera, 34 families and 24 orders. Surveyed species of macroinvertebrates were classified into 1 phyla, 2 classes, 4 orders, 7 families, 9 species. The macroinvertebrates showed FFG (Functional Feeding Groups) such as GC (Gathering-Collector) and SH (Shedder). A total of 42 species of fish was collected including $Zacco$ $koreanus$ and $Coreoperca$ $herzi$. In this study, we investigated environmental factors including pollutant source, load, water quality and distribution characteristics of biota such as phytoplankton, zooplankton, macrophyte plants, macroinvertebrates, fish.

The Limnological Survey of a Coastal Lagoon in Korea (4); Lake Songji (동해안 석호의 육수학적 조사 (4); 송지호)

  • Kwon, Sang-Yong;Heo, Woo-Myung;Lee, Sang-Ha;Kim, Dong-Jin;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.4 s.114
    • /
    • pp.461-474
    • /
    • 2005
  • Physicochemical parameters, plankton community structure, and sediment were surveyed from 1988 to 2002, at two months interval, in a eutrophic coastal lagoon (Lake Songji, Korea). The lake basin is separated from the sea by a narrow sand dune, and a shallow sill divides the lake basin into two sub-basins. The stable stratifications and chemoclines are maintained all through the year at 1-2 m depth. DO was often very low (<1 $mgO_2\;{\cdot}\;L^{-1}$) in the monimolimnion. Secchi disc transparency was in the range of 0.5-2.7 m. TP, TN, and Chl. a concentration in the mixolimnion were 0.015-0.396 $mgP\;{\cdot}\;L^{-1}$), 0.223-3.521 $mgN\;{\cdot}\;L^{-1}$, and 0.5-129.8 mg ${\cdot}\;m^{-3}$, respectively. TSI was in the eutrophic range of 54 to 62. Sediment was composed of silt and coarse silt. COD, TP, and TN content of the sediment were 51.4-116.9 $mgO_2\;{\cdot}\;gdw^{-1}$, 0.04-1.46 $mgP\;{\cdot}\;gdw^{-1}$ and, 0.12-1.03 $mgN\;{\cdot}\;gdw^{-1}$, respectively. The 49 phytoplankton species were identified. The maximum phytoplankton abundance obscured the lake in September 2001 (max. density: 23,350 cells ${\cdot}\;mL^{-1}$. The Chlorophyte Schroederia judayi was dominant species in summer (max. density: 20,417 cells ${\cdot}\;mL^{-1}$). The lake showed unique limnological features of a brackish lagoon in respect to biological community, chemical characteristics, and physical phenomena.

Long-term Variation of Water Quality in Lake Andong (안동호 수질의 장기적인 변화)

  • Kwon, Sang-Yong;Kim, Bom-Chul;Park, Ju-Hyun;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.260-266
    • /
    • 2000
  • Water quality parameters were surveyed in Lake Andong. Turbidity, temperature, secchi disc transparency (SD), phosphorus, nitrogen and chlorophyll a concentration were measured at dam site from July 1993 to December 1998. Minimum transparency in summer was only about 2 meters in 1993 and 1994, but it decreased to about 1 meter in 1997 and 1988. Total phosphorus concentration of the epilimnion increased slightly from $11{\sim}30\;mgP/m^3$ in 1993 to $18{\sim}42\;mgP/m^3$ in 1998. Total nitrogen concentration of the epilimnion decreased slightly from $1.81{\sim}2.96\;mgN/L$ in 1993 to $1.48{\sim}2.57\;mgN/L^3$ in 1998. TN/TP weight ratio decreased from $82{\sim}281$ in 1993 to $21{\sim}143$ in 1998 due to the increase of phosphorus concentration and the decrease of nitrogen concentration. Dissolved inorganic phosphorus concentration and the decrease of nitrogen concentration. Dissolved inorganic phosphorus and nitrate nitrogen concen tration of the epilimnion were in the range of $0.9{\sim}5.3\;mgP/m^3$ and $1.36{\sim}1.68\;mgN/L$, respectively. Chlorophyll a concentration in summer was in the range of $11.0{\sim}19.1\;mg/m^3$ in 1994, 1996 and 1997, but it decreased to $2.3{\sim}6.5\;mg/m^3$ in 1998. Trophic state of Lake Andong can be classified as mesotrophic to eutrophic from TP, TN and chlorophyll a concentration.

  • PDF

A Program of Water Quality Management for Agricultural Reservoirs by Trophic State (농업용 저수지의 부영양화와 수질관리방안)

  • Lee, Kwang-Sik;Yoon, Kyung-Sup;Kim, Ho-Il;Kim, Hyung-Joong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.166-171
    • /
    • 2003
  • A total of 498 agricultural reservoirs ranging from $164{\times}10^3\;m^3$ to $253{\times}10^6\;m^3$ in storage volume were investigated from 1990 to 2001 with respect to Chl-${\alpha}$, COD concentration and pollutant loading of BOD, TN, and TP. The lakes and reservoirs could be classified to 4 types using the relationships between the ratio of storage volume per water surface area(ST/WS) and Chl-${\alpha}$ concentration. It is recommended that the improvement of polluted lakes should be performed in the order of integrated consolidation type ${\rightarrow}$ watershed consolidation type ${\rightarrow}$ in-lake consolidation type ${\rightarrow}$ Management type and reservoir should be constructed to be over $5{\sim}6\;m$ in depth(ST/WS ratio) for preventing the eutrophication of agricultural reservoirs. We propose that water quality criteria for agricultural water is changed from less than 8 mg/L to less than 6 mg/L for safety value, $6{\sim}10\;mg/L$ for concern value, and more than 10 mg/L for countermeasure value in COD concentration, respectively.