• 제목/요약/키워드: Trivalent ions

검색결과 57건 처리시간 0.029초

투과증발공정을 이용한 물-알코올계에 대한 금속이온이 치환된 이온교환막의 염효과 연구 (Salt Effect of Metal Ion Substituted Membranes for Water-Alcohol Systems Using Pervaporation Processes)

  • 임지원;전지현
    • 멤브레인
    • /
    • 제11권3호
    • /
    • pp.133-139
    • /
    • 2001
  • PVA/SSA-$H^{+}$으로 제조된 막은 1가 이온 $Li^{+}$, $Na^{+}$, $K^{+}$, 2가 이온 $Mg^{2+}$, $Ca^{2+}$, $Ba^{2+}$, 3가 이온 $Al^{+}$로 치환되었다. 각 금속이온이 치환된 막의 금속이온의 효과를 알아보기 위하여 물-에탄올 및 물-메탄올 혼합용액에 대하여 팽윤도 및 투과증발 실험을 수행하였다. 또한 이들의 치환정도를 알아보기 위해 부분적으로 ESCA 실험을 통하여 알아보았다. 물-에탄올 및 물-메탄올 혼합용액에 대한 팽윤도는 $Li^{+}$> $Na^{+}$>$K^{+}$의 순으로 감소하였는데 이는 금속이온의 `salting-out'효과에 기인하는 것으로 사료되었으며, 2가 및 3가이온의 경우의 팽윤도 결과는 `salting-out' 효과뿐만 아니라 electrostatic 가교 및 금속이온의 반응성에 의해 좌우되는 것으로 사료되었다. 투과증발실험을 통한 투과도면에서는 물-에탄올 용액에 대해 PVA/SSA-$Na^{+}$막에서 최소치를 보였다가 PVA/SSA-$K^{+}$막에서 다시 증가하는 결과를 얻은 반면에 선택도는 반대의 경향을 얻었다. 대표적 분리 결과는 $50^{\circ}C$에서 90%에탄올 수용액에 대하여 투과도는 59 g/$m^{2}$hr, 선택도는 44의 값을 얻었다. 물-메탄올 용액에 대해서는 1가이온의 경우 에탄올 용액과 같은 경향의 결과를 얻었으나 2가 및 3가 이온의 경우 팽윤도 실험 결과와 마찬가지로 `salting-out' 효과 그리고 electrostatic 가교 등에 의해 영향을 받는다고 할 수 있다.

  • PDF

A Study on Feasibility of Hexagonal Phase ZnS:$Mn^{2+}$ Phosphor for Low-voltage Display Applications

  • Shin, Sang-Hoon;Lee, Sang-Hyuk;You, Yong-Chan;Jung, Joa-Young;Park, Chang-Won;Chang, Dong-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.815-818
    • /
    • 2002
  • Mn doped hexagonal phase of ZnS has been studied as a yellow-orange phosphor for the application to fluorescent displays operated at low voltages. It was found that luminescence from $Mn^{2+}$ was increased as the Mn concentration was increased up to1.2 mol% of host lattice. This study has been attempted by adding trivalent ions such as $Al^{3+}$ or $Bi^{3+}$ to ZnS:Mn as an agent to do the efficient incorporation of Mn ions into ZnS:Mn lattice, resulting in a significant improvement in the phosphor performance, especially at low voltages.

  • PDF

N- and P-doping of Transition Metal Dichalcogenide (TMD) using Artificially Designed DNA with Lanthanide and Metal Ions

  • Kang, Dong-Ho;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.292-292
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with a two-dimensional layered structure have been considered highly promising materials for next-generation flexible, wearable, stretchable and transparent devices due to their unique physical, electrical and optical properties. Recent studies on TMD devices have focused on developing a suitable doping technique because precise control of the threshold voltage ($V_{TH}$) and the number of tightly-bound trions are required to achieve high performance electronic and optoelectronic devices, respectively. In particular, it is critical to develop an ultra-low level doping technique for the proper design and optimization of TMD-based devices because high level doping (about $10^{12}cm^{-2}$) causes TMD to act as a near-metallic layer. However, it is difficult to apply an ion implantation technique to TMD materials due to crystal damage that occurs during the implantation process. Although safe doping techniques have recently been developed, most of the previous TMD doping techniques presented very high doping levels of ${\sim}10^{12}cm^{-2}$. Recently, low-level n- and p-doping of TMD materials was achieved using cesium carbonate ($Cs_2CO_3$), octadecyltrichlorosilane (OTS), and M-DNA, but further studies are needed to reduce the doping level down to an intrinsic level. Here, we propose a novel DNA-based doping method on $MoS_2$ and $WSe_2$ films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures. The available n-doping range (${\Delta}n$) on the $MoS_2$ by Ln-DNA (DNA functionalized by trivalent Ln ions) is between $6{\times}10^9cm^{-2}$ and $2.6{\times}10^{10}cm^{-2}$, which is even lower than that provided by pristine DNA (${\sim}6.4{\times}10^{10}cm^{-2}$). The p-doping change (${\Delta}p$) on $WSe_2$ by Ln-DNA is adjusted between $-1.0{\times}10^{10}cm^{-2}$ and $-2.4{\times}10^{10}cm^{-2}$. In the case of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions) doping where $Eu^{3+}$ or $Gd^{3+}$ ions were incorporated, a light p-doping phenomenon is observed on $MoS_2$ and $WSe_2$ (respectively, negative ${\Delta}n$ below $-9{\times}10^9cm^{-2}$ and positive ${\Delta}p$ above $1.4{\times}10^{10}cm^{-2}$) because the added $Cu^{2+}$ ions probably reduce the strength of negative charges in Ln-DNA. However, a light n-doping phenomenon (positive ${\Delta}n$ above $10^{10}cm^{-2}$ and negative ${\Delta}p$ below $-1.1{\times}10^{10}cm^{-2}$) occurs in the TMD devices doped by Co-DNA with $Tb^{3+}$ or $Er^{3+}$ ions. A significant (factor of ~5) increase in field-effect mobility is also observed on the $MoS_2$ and $WSe_2$ devices, which are, respectively, doped by $Tb^{3+}$-based Co-DNA (n-doping) and $Gd^{3+}$-based Co-DNA (p-doping), due to the reduction of effective electron and hole barrier heights after the doping. In terms of optoelectronic device performance (photoresponsivity and detectivity), the $Tb^{3+}$ or $Er^{3+}$-Co-DNA (n-doping) and the $Eu^{3+}$ or $Gd^{3+}$-Co-DNA (p-doping) improve the $MoS_2$ and $WSe_2$ photodetectors, respectively.

  • PDF

Preparation and Luminescence of Europium-doped Yttrium Oxide Thin Films

  • Chung, Myun Hwa;Kim, Joo Han
    • Applied Science and Convergence Technology
    • /
    • 제26권2호
    • /
    • pp.26-29
    • /
    • 2017
  • Thin films of europium-doped yttrium oxide ($Y_2O_3$:Eu) were prepared on Si (100) substrates by using a radio frequency (RF) magnetron sputtering. After the deposition, the films were annealed at $1000^{\circ}C$ in an air ambient for 1 hour. X-ray diffraction analysis revealed that the $Y_2O_3$:Eu films had a polycrystalline cubic ${\alpha}-Y_2O_3$ structure. The as-deposited films showed no photoluminescence (PL), which was due to poor crystalline quality of the films. The crystallinity of the $Y_2O_3$:Eu films was significantly improved by annealing. The strong red PL emission was observed from the annealed $Y_2O_3$:Eu films and the highest intensity peak was centered at around 613 nm. This emission peak originated from the $^5D_0{\rightarrow}^7F_2$ transition of the trivalent Eu ions occupying the $C_2$ sites in the cubic ${\alpha}-Y_2O_3$ lattice. The broad PL excitation band was observed at wavelengths below 280 nm, which was attributed to the charge transfer transition of the trivalent Eu ion.

Pycnometric and Spectroscopic Studies of Red Phosphors Ca2+(1-1.5x)WO4:Eu3+x and Ca2+(1-2x)WO4:Eu3+x,Na+x

  • Cho, Seon-Woog
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2769-2773
    • /
    • 2013
  • Red phosphors $Ca_{(1-1.5x)}Eu_xWO_4$ and $Ca_{(1-2x)}Eu^_xNa_xWO_4$ were synthesized with various concentrations x of $Eu^{3+}$ ions by using a solid-state reaction method. The crystal structure of the red phosphors were found to be a tetragonal scheelite structure with space group $I4_1/a$. X-ray diffraction (XRD) results show the (112) main diffraction peak centered at $2{\theta}=28.71^{\circ}$, and indicate that there is no basic structural deformation caused by the vacancies ${V_{Ca}}^{{\prime}{\prime}}$ or the $Eu^{3+}$ (and $Na^+$) ions in the host crystals. Densities of $Ca_{(1-1.5x)}Eu_xWO_4$ were measured on a (helium) gas pycnometer. Comparative results between the experimental and theoretical densities reveal that $Eu^{3+}$ (and $Na^+$) ions replace the $Ca^{2+}$ ions in the host $CaWO_4$. Also, the photoluminescence (PL) emission and photoluminescence excitation (PLE) spectra show the optical properties of trivalent $Eu^{3+}$ ions, not of divalent $Eu^{2+}$. Raman spectra exhibit that, without showing any difference before and after the doping of activators to the host material $CaWO_4$, all the gerade normal modes occur at the identical frequencies with the same shapes and weaker intensities after the substitution. However, the FT-IR spectra show that some of the ungerade normal modes have shifted positions and different shapes, caused by different masses of $Eu^{3+}$ ions (or $Na^+$ ions, or ${V_{Ca}}^{{\prime}{\prime}}$ vacancies) from $Ca^{2+}$.

Stability Constants of First-row Transition Metal and Trivalent Lanthanide Metal Ion Complexes with Macrocyclic Tetraazatetraacetic and Tetraazatetramethylacetic Acids

  • 홍춘표;김동원;최기영;김창태;최용규
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권3호
    • /
    • pp.297-300
    • /
    • 1999
  • The protonation constants of the macrocyclic ligands, 1,4-dioxa-7,10,13,16-tetraaza-cyclooctadecane-N,N',N",N"'-tetra(acetic acid) [N-ac4[18]aneN402] and 1,4-dioxa-7,10,13,16-tetraazacyclooctadecane-1,4-dioxa-7,10,13,16-N,N',N",N"'-tetra(methylacetic acid) [N-meac4[18]aneN4O2] have been determined by using potentiometric method. The protonation constants of the N-ac4[18]aneN4O2 were 9.31 for logK1H, 8.94 for logK2H, 7.82 for logK3H, 4.48 for logK4H and 2.94 for logK5H. And the protonation constants of the N-meac4[18]aneN4O2 were 9.34 for logK1H, 9.13 for logK2H, 8.05 for logK3H, 5.86 for logK4H, and 3.55 for logK5H. The stability constants of complexes on the divalent transition ions (Co2+, Ni2+, Cu2+, and Zn2+) and tiivalent metal ions (Ce3+, Eu3+, Gd3+, and Yb3+) with ligands N-ac4[18]-aneN4O2 and N-meac4[18]aneN4O2 have been obtained from the potentiometric data with the aid of the BEST program. The three higher values of the protonation constants for synthesized macrocyclic ligands correspond to the protonation of nitrogen atoms, and the fourth and fifth values correspond to the protonation of the carboxylate groups for the N-ac4[18]aneN4O2 and N-meac4[18]aneN4O2. The meatal ion affinities of the two tetra-azamacrocyclic ligands with four pendant acetate donor groups or methylacetate donor groups are compared. The effects of the metal ions on the stabilities are discussed, and the trends in stability constants resulting from changing the macrocyclic ring with pendant donor groups and acidity of the metal ions.

Fabrication and characterization of CaLa2ZnO5 based nanocrystalline materials

  • Hussain, Sk. Khaja;Raju, G. Seeta Rama;Yu, Jae Su
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.352.2-352.2
    • /
    • 2016
  • In recent times, much effort has been concentrated on trivalent rare-earth ions activated ceramics or oxide phosphors to develop display industries due to their promising applications in optoelectronic devices and field-emission displays. To prepare efficient phosphors, citrate sol-gel method is one of the best synthetic methods. Green and blue emissive CaLa2ZnO5:RE3+ nanocrystalline materials are synthesized by a citrate sol-gel method. After the samples annealing at $1100^{\circ}C$, morphological and structural properties are investigated by scanning electron microscope images and X-ray diffraction patterns, respectively. At low electron beam voltage of <5 kV, the visible photoluminescence properties are obtained. Various concentrations of the RE3+ ions exhibited their characteristic emission peaks at different excitation wavelengths, respectively. Similarly, at high electron beam anodic voltage, the cathodoluminescence properties are studied as a function of acceleration voltage and filament current. The chromaticity coordinates are calculated for the optimized CaLa2ZnO5 nanocrystalline luminescent materials.

  • PDF

상수도 불소화에 관한 고찰;양이온의 불화염 형성을 중심으로 (A Review of Fluoridation of Municipal Drinking Water; Considering the Interaction of Cations and Fluoride)

  • 안혜원;신동천;정용
    • Environmental Analysis Health and Toxicology
    • /
    • 제13권1_2호
    • /
    • pp.19-26
    • /
    • 1998
  • In Korea, fluoride was first introduced into the drinking water of residents of Jinhae, KyungNam in 1981 for the prevention of dental caries. Ever since, growing numbers of communities favor fluoridation. The mechanism of F prevention of tooth decay is well known: fluoride ions substitute for hydroxyl ions in hydroxyapatite of hard tissues, which result in crystal perfection, with consequent reduction in dental caries. Soluble fluorides such as sodium fluoride are almost completely absorbed from the gastrointestinal tract. However, the presence of divalent or trivalent cations such as aluminum, magnesium, and calcium that can complex with F can reduce the degree of absorption. In U.S.A., over 7000 communities are now adding F to their drinking water. However, some portion of population oppose fluoridation, voicing both concern about the safety of fluoridation as well as for personal choice. Thus, This paper reviews the interaction of fluoride and cations as well as fluoride and suggests possible problems associated with fluoridation, a controversial issue.

  • PDF

Manganese(II) Ion-Selective Membrane Electrode Based on N-(2-picolinamido ethyl)-Picolinamide as Neutral Carrier

  • Aghaie, M.;Giahi, M.;Zawari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2980-2984
    • /
    • 2010
  • A new poly (vinyl chloride) (PVC) membrane electrode that is highly selective to $Mn^{+2}$ ions was prepared using N,N'-bis(2'-pyridinecarboxamide)-1,2-ethane ($bpenH_2$) as a suitable neutral carrier. This concentration range ($1.0{\times}10^{-5}$ to $1.0{\times}10^{-1}\;M$) with Nernstian slope of $29.3{\pm}0.5\;mV$ per decade. The detection limit and the response time of electrode were $8.0{\times}10^{-6}\;M$ and (${\leq}15\;s$) respectively. The membrane can be used for more than two months without observing any divergence. The electrodes exhibited excellent selectivity for $Mn^{+2}$ ion over other mono-, di- and trivalent cations. Selectivity coefficients were determined by the matched potential method (MPM). The electrode can be used in the pH range from 4.0 - 9.0. The isothermal coefficient of this electrode amounted to 0.00023 V/$^{\circ}C$. The stability constant (log $K_s$) of the $Mn^{+2}$ - $bpenH_2$ complex was determined at $25^{\circ}C$ by potentiometric titration in mixed aqueous solution. The proposed electrode was applied to the determination of $Mn^{+2}$ ions in real samples.

Structural and temperature coefficient of resistance characteristics of colossal magnetoresistance Mn oxides prepared by RF sputtering

  • Choi, Sun-Gyu;Ha, Tae-Jung;Reddy, A.Sivasankar;Yu, Byoung-Gon;Park, Hyung-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.361-361
    • /
    • 2007
  • A lot of efforts have been paid to develop infrared imaging systems in last decades. Bolometer has a wide range of applications from military to commercial, such as military night vision, medical imaging system and so on. Bolometer is a resistive sensor that detects temperature changes through resistance change. To improve detecting ability, bolometer should have a good resistive film which has high temperature coefficient of resistance (TCR) value. Colossal magnetoresistance (CMR) $L_{1-x}A_xMnO_3$ (where L and A are trivalent rare-earth ions and divalent alkaline earth ions, respectively.) are received attention to apply bolometer resistive film because it has a high TCR property which was discovered in the metal to semiconductor phase transition temperature region. In this work, CMR films were deposited on various substrates in relative low substrate temperature by RF magnetron sputtering. The influence of deposition parameters such as substrate temperature, gas partial pressure, and so on have been studied. The structural and TCR properties of the films were also investigated for applying to microbolometer.

  • PDF