• Title/Summary/Keyword: Tris-egg yolk-glycerol (TEY)

Search Result 2, Processing Time 0.015 seconds

Comparison various level ascorbic acid and lycopene additions in semen diluent enhanced sperm quality of Sapudi ram

  • Bintara Sigit;Dyah Maharani;Luis Tavares;Pradita Iustitia Sitaresmi
    • Journal of Animal Science and Technology
    • /
    • v.66 no.5
    • /
    • pp.891-904
    • /
    • 2024
  • The primary cause of sperm quality decline during the freeze-thaw pathway is the peroxidation hazard caused by reactive oxygen species produced by the biological molecules of sperm. Ascorbic acid (Vitamin C) and lycopene are two potent antioxidants that operate to prevent oxidation processes. This study aimed to analyse the effects of ascorbic acid and lycopene on the motility, viability, abnormality and plasma membrane integrity of post-thawed Sapudi rams. Sperm samples were obtained and pooled from six sexually mature Sapudi rams, separated into ten equal proportions and diluted with Tris-egg yolk-glycerol (TEY) extender. Semen was supplemented with 0 (C0; L0), 1 (C1; L1), 2 (C2; L2), 3 (C3; L3) and 4 (C4; L4) mg/100 mL (1%-4%) diluent each of ascorbic acid and lycopene, respectively. Total sperm motility, viability, abnormalities and semen membrane plasma (%) were analysed after thawing. C3 and L3 extenders resulted in higher total motility (p < 0.05) compared to the other extenders, with all treatments higher than that of the control. The extender C3 (p < 0.05) exhibited the highest semen quality. Finally, the current findings show that C3 and L3 can increase the quality of post-thawed Sapudi ram spermatozoa.

Evaluation of the optimal thawing conditions for dog spermatozoa frozen in cryovials

  • Saddah Ibrahim;Yubyeol Jeon;Il-Jeoung Yu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.88-94
    • /
    • 2024
  • Background: Using cryovial for freezing dog spermatozoa provides a practical method to increase extended sperm volume and shorten the time required for equilibration by using a simple freezing techniques. The purpose of this study was to determine the optimal thawing condition for dog sperm cryopreservation using cryovials. Methods: For sperm freezing, cryovials with 200 × 106 sperm/mL were cooled after the addition of tris egg yolk extender (TEY) at 4℃ for 20 min, then TEY with 4% glycerol was added and equilibrated for another 20 min before being aligned over LN2 vapor for another 20 min and plunged directly into LN2. Spermatozoa were thawed in a water bath at 37℃ for varying times (25 sec, 60 sec, 90 sec, and 120 sec) in the first experiment. In the second experiment, spermatozoa were thawed in a water bath at various temperatures and times (37℃ for 1 min, 37℃ for 1 min with gentle stirring, 24℃ for 24 min, and 75℃ for 20 sec). In these experiments, the effect of thawing conditions on motility parameters, viability (SYBR-14/PI), and acrosome integrity (PSA/FITC) of spermatozoa were investigated. Results: The post-thaw sperm motility parameters, viability, and acrosome integrity were not significantly different across the experimental groups. Conclusions: In this study, the characteristics of spermatozoa frozen using cryovials were not significantly affected by various thawing conditions.