• Title/Summary/Keyword: Triple Band

Search Result 135, Processing Time 0.029 seconds

Design of a Triplexer for Mobile Communication (AMPS, GPS, US-PCS 대역용 Triplexer 설계)

  • 이재선;윤태순;김기병;이종철;박재영;고영준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.327-334
    • /
    • 2004
  • In this paper, a triplexer for Advanced Mobile Phone Service(AMPS), United States-Personal Communication Services(US-PCS), and Global Positioning System(CPS) is designed using L and C lumped elements. The triplexer shows the insertion loss of 0.6 ㏈, 1.1 ㏈, and 1.6 ㏈ for AMPS, US-PCS, and GPS bands, respectively. Also, it shows the attenuation characteristic of less than 18 ㏈, and the VSWR of less than 2.0 through the all pass-band.

A Bandgap Reference Voltage Generator Design for Low Voltage SoC (저전압 SoC용 밴드갭 기준 전압 발생기 회로 설계)

  • Lee, Tae-Young;Lee, Jae-Hyung;Kim, Jong-Hee;Shim, Oe-Yong;Kim, Tae-Hoon;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.137-142
    • /
    • 2008
  • The band-gap reference voltage generator which can be operated by low voltage is proposed in this paper. The proposed BGR circuit can be realized in logic process by using parasitic NPN BJTs because a $Low-V_T$ transistors are not necessary. The proposed BGR circuit is designed and fabricated using $0.18{\mu}m$ triple-well process. The mean voltage of measured VREF is 0.72V and the three sigma$(3{\sigma})$ is 45.69mv.

Tunable doping sites and the impacts in photocatalysis of W-N codoped anatase TiO2

  • Choe, Hui-Chae;Sin, Dong-Bin;Yeo, Byeong-Cheol;Song, Tae-Seop;Han, Sang-Su;Park, No-Jeong;Kim, Seung-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.246-246
    • /
    • 2016
  • Tungsten-nitrogen (W-N) co-doping has been known to enhance the photocatalytic activity of anatase titania nanoparticles by utilizing visible light. The doping effects are, however, largely dependent on calcination or annealing conditions, and thus, the massive production of quality-controlled photocatalysts still remains a challenge. Using density functional theory (DFT) thermodynamics and time-dependent DFT (TDDFT) computations, we investigate the atomic structures of N doping and W-N co-doping in anatase titania, as well as the effect of the thermal processing conditions. We find that W and N dopants predominantly constitute two complex structures: an N interstitial site near a Ti vacancy in the triple charge state and the simultaneous substitutions of Ti by W and the nearest O by N. The latter case induces highly localized shallow in-gap levels near the conduction band minimum (CBM) and the valence band maximum (VBM), whereas the defect complex yielded deep levels (1.9 eV above the VBM). Electronic structures suggest that substitutions of Ti by W and the nearest O by N improves the photocatalytic activity of anatase by band gap narrowing, while defective structure degrades the activity by an in-gap state-assisted electron-hole recombination, which explains the experimentally observed deep level-related photon absorption. Through the real-time propagation of TDDFT (rtp-TDDFT), we demonstrate that the presence of defective structure attracts excited electrons from the conduction band to a localized in-gap state within a much shorter time than the flat band lifetime of titania. Based on these results, we suggest that calcination under N-rich and O-poor conditions is desirable to eliminate the deep-level states to improve photocatalysis.

  • PDF

Dual-wide-band absorber of truncated-cone structure, based on metamaterial

  • Kim, Y.J.;Yoo, Y.J.;Rhee, J.Y.;Kim, K.W.;Park, S.Y.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.235.1-235.1
    • /
    • 2015
  • Artificially-engineered materials, whose electromagnetic properties are not available in nature, such as negative reflective index, are called metamaterials (MMs). Although many scientists have investigated MMs for negative-reflective-index properties at the beginning, their interests have been extended to many other fields comprising perfect lenses. Among various kinds of MMs, metamaterial absorbers (MM-As) mimic the blackbody through minimizing transmission and reflection. In order to maximize absorption, the real and the imaginary parts of the permittivity and permeability of MM-As should be adjusted to possess the same impedance as that of free space. We propose a dual-wide-band and polarization-independent MM-A. It is basically a triple-layer structure made of metal/dielectric multilayered truncated cones. The multilayered truncated cones are periodically arranged and play a role of meta-atoms. We realize not only a wide-band absorption, which utilizes the fundamental magnetic resonances, but also another wide-band absorption in the high-frequency range based on the third-harmonic resonances, in both simulation and experiment. In simulation, the absorption bands with absorption higher than 90% are 3.93 - 6.05 GHz and 11.64 - 14.55 GHz, while the experimental absorption bands are in 3.88 - 6.08 GHz and 9.95 - 13.84 GHz. The physical origins of these absorption bands are elucidated. Additionally, it is also polarization-independent because of its circularly symmetric structures. Our design is scalable to smaller size for the infrared and the visible ranges.

  • PDF

Multi-band directional antenna for satellite communications (위성 통신용 다대역 안테나)

  • Cheong, Chi-Hyun;Jeong, Hye-Mi;Kim, Kun-Woo;Bae, Ki-Hyoung;Tae, Hyun-Sik;Evtyushkin, Gennadiy
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1223-1231
    • /
    • 2010
  • The design is presented for a SATCOM antenna capable of simultaneous multi-band (X/Ku/Ka-Band) communications without replacement of feed horns or change of other parts in the application as a ground satellite terminal for large data transfer. The antenna is the offset configuration and consists of a dual-band(X/Ka-band) feed horn, a single-band(Ku-band) feed horn, a frequency selective surface(FSS) sub-reflector and a parabolic main-reflector. The antenna has a main reflector defining a prime focus and a frequency selective surface sub-reflector defining an image focus. A dual-band feed and a single-band feed are provided at each of the prime focus and image focus. The antenna is designed using 3D EM simulator and the gains measured in X/Ku/Ka-band of the complete antenna assembly is more than 31.6dBi, 36.8dBi, 40.8dBi, and the cross polarization is 21.7dB, 26.6dB, 25.2dB, respectively.

Design of Triple-Band Microstrip Antenna for WLAN/WiMAX (WLAN/WiMAX용 삼중대역 마이크로스트립 안테나 설계)

  • Oh, Mal-Goen;Kim, Kab-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.213-217
    • /
    • 2014
  • In this paper, we designed monopole microstrip antenna for WLAN/WiMAX system. The monopole antenna is designed by FR-4 substrate with size is $30mm{\times}40mm$. The proposed antenna is based on a planar monopole design which cover WLAN and WiMAX frequency bands. To obtain the optimized parameters, we used the simulator, CST's Microwave Studio Program and found the parameters that greatly effect antenna characteristics. Using the obtained parameters, the antenna is designed. Thus the proposed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. And characteristics of gain and radiation patterns are obtained for WLAN/WiMAX frequency bands.

A compact Monopole Antenna Design for WLAN/WiMAX Triple Band Operations (WLAN/WiMAX 삼중대역에서 동작하는 모노폴 안테나의 설계)

  • Yoon, Joong-Han;Jang, Yeon-Gil;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.465-473
    • /
    • 2012
  • In this study, a novel dual band planar monopole antenna for wireless local area network (WLAN)/ Worldwide Interoperability of Microwave Access (WiMAX) application was designed, fabricated, and measured. The proposed antenna consists of two hook shaped strips, an asymmetric ground plane, and a rectangular slit in the ground plane. Acceptable agreements between the measured and simulated results are achieved. Numerical and experimental results demonstrate that the proposed antenna satisfies the 10 dB impedance bandwidth requirement while covering the WLAN and WiMAX bands simultaneously. This paper also presents and discusses the 2D radiation patterns and 3D gains according to the results of the experiment that was conducted.

Optimization of μc-SiGe:H Layer for a Bottom Cell Application

  • Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.322.1-322.1
    • /
    • 2014
  • Many research groups have studied tandem or multi-junction cells to overcome this low efficiency and degradation. In multi-junction cells, band-gap engineering of each absorb layer is needed to absorb the light at various wavelengths efficiently. Various absorption layers can be formed using multi-junctions, such as hydrogenated amorphous silicon carbide (a-SiC:H), amorphous silicon germanium (a-SiGe:H) and microcrystalline silicon (${\mu}c$-Si:H), etc. Among them, ${\mu}c$-Si:H is the bottom absorber material because it has a low band-gap and does not exhibit light-induced degradation like amorphous silicon. Nevertheless, ${\mu}c$-Si:H requires a much thicker material (>2 mm) to absorb sufficient light due to its smaller light absorption coefficient, highlighting the need for a high growth rate for productivity. ${\mu}c$-SiGe:H has a much higher absorption coefficient than ${\mu}c$-Si:H at the low energy wavelength, meaning that the thickness of the absorption layer can be decreased to less than half that of ${\mu}c$-Si:H. ${\mu}c$-SiGe:H films were prepared using 40 MHz very high frequency PECVD method at 1 Torr. SiH4 and GeH4 were used as a reactive gas and H2 was used as a dilution gas. In this study, the ${\mu}c$-SiGe:H layer for triple solar cells applications was performed to optimize the film properties.

  • PDF

Characteristics of MHEMT Devices Having T-Shaped Gate Structure for W-Band MMIC (W-Band MMIC를 위한 T-형태 게이트 구조를 갖는 MHMET 소자 특성)

  • Lee, Jong-Min;Min, Byoung-Gue;Chang, Sung-Jae;Chang, Woo-Jin;Yoon, Hyung Sup;Jung, Hyun-Wook;Kim, Seong-Il;Kang, Dong Min;Kim, Wansik;Jung, Jooyong;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.99-104
    • /
    • 2020
  • In this study, we fabricated a metamorphic high-electron-mobility transistor (mHEMT) device with a T-type gate structure for the implementation of W-band monolithic microwave integrated circuits (MMICs) and investigated its characteristics. To fabricate the mHEMT device, a recess process for etching of its Schottky layer was applied before gate metal deposition, and an e-beam lithography using a triple photoresist film for the T-gate structure was employed. We measured DC and RF characteristics of the fabricated device to verify the characteristics that can be used in W-band MMIC design. The mHEMT device exhibited DC characteristics such as a drain current density of 747 mA/mm, maximum transconductance of 1.354 S/mm, and pinch-off voltage of -0.42 V. Concerning the frequency characteristics, the device showed a cutoff frequency of 215 GHz and maximum oscillation frequency of 260 GHz, which provide sufficient performance for W-band MMIC design and fabrication. In addition, active and passive modeling was performed and its accuracy was evaluated by comparing the measured results. The developed mHEMT and device models could be used for the fabrication of W-band MMICs.

Fabrication and Measurement of Triple U-shaped slot Microstrip Antenna in 5GHz band (5GHz 대역에서 트리플 U-슬롯 모양의 마이크로스트립 안테나 설계 및 제작)

  • Kang, Moon-Kyou;Jung, Yoo-Keun;Ju, Jeong-Min;Jeong, Gyey-Teak;Yoon, Joong-Han;Kwak, Kyung-Sup
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.86-95
    • /
    • 2004
  • In this paper, we designed, fabricated, and measured antenna results consisting of previous research, that can handle from wireless using-LAN U-shaped slot antenna of HiperLAN bandwidth to ISM band of HiperLAN 1/2 & 5 GHz bandwidth. We presented a new model that structuresof basic U-shaped slot added the same thing twice.After the foam layer is inserted between ground plane and substrate, we got enough bandwidth for VSWR<1.5. The antenna gain was $6.27{\sim}9.82dBi$. The radiation pattern got a stable pattern in frequency bandwidth.

  • PDF