• Title/Summary/Keyword: Triphenylene

Search Result 8, Processing Time 0.02 seconds

Structure, Modified Scaled Quantum Mechanical Force Field and A Priori Prediction of Vibrational Spectra and Their Assignment and Exponential Scaling of Frequencies of Triphenylene

  • Bandyopadhyay, Indrajit
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.717-722
    • /
    • 2003
  • The structure, force field and vibrational spectra of triphenylene are studied by $B3LYP/6-31G^*$(5d) level of theory. The results are compared to those of the related system, phenanthrene. The scale factors in nonredundant local coordinates obtained after fitting the DFT frequencies to the experimental numbers of phenanthrene-$d_0 and -d_{10}$ are transferred to predict the spectra and assignment of triphenylene for in-plane modes. The frequencies based on scaling methodology due to Lee et al. are also obtained. These frequencies are compared with the predicted numbers based on scale factors from phenanthrene. Probable assignment for out-of-plane modes is proposed based on simple scaling of Scott and Radom (scale factor 0.9614) as well as by scaling methodology by Lee et al.

Blue Organic Light-Emitting Diodes Based on Triphenylene Derivatives

  • Kim, Seul Ong;Jang, Heung Soo;Lee, Seok Jae;Kim, Young Kwan;Yoon, Seung Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2267-2270
    • /
    • 2013
  • A series of blue fluorescent emitters based on triphenylene derivatives were synthesized via the Diels-Alder reaction in moderate yields. The electronic absorption and emission characteristics of the new functional materials were affected by the nature of the substituent on the triphenylene nucleus. Multilayered OLEDs were fabricated with a device structure of: ITO/NPB (50 nm)/EML (30 nm)/Bphen (30 nm)/Liq (2.0 nm)/Al (100 nm). All devices showed efficient blue emissions. Among those, a device using 1 gives the best performances with a high brightness (978 cd $m^{-2}$ at 8.0 V) and high efficiencies (a luminous efficiency of 0.80 cd/A, a power efficiency of 0.34 lm/W and an external quantum efficiency of 0.73% at 20 $mA/cm^2$). The peak wavelength of the electroluminescence was 455 nm with CIEx,y coordinates of (0.17, 0.14) at 8.0 V.

UV-HPLC Determination of Carbowyl Group Using 2-Bromoacetyltriphenylene as a Pre-labeling Reagent - The isolative determination of prostaglandin $E_2$ and $F_2{\alpha}$ by HPLC (2-Bromoacetyltriphenylene 유도체화제를 이용한 카르복실기 함유성분의 분석법 (I) - 프로스타글란딘 $E_2$$F_2{\alpha}$ 혼합물의 HPLC에 의한 분리정량)

  • 이왕규;정해수;김박광
    • YAKHAK HOEJI
    • /
    • v.30 no.6
    • /
    • pp.311-316
    • /
    • 1986
  • A new UV labeling reagent was developed and used in HPLC for the determination of prostaglandin $E_2$ which have weak UV light-absorbing property. This reagent, 2-bromoacetyltriphenylene, was synthesized by the bromination of 2-acetyltriphenylene which was obtained from triphenylene by Friedel-Crafts reaction. The wave length maximum (${\lambda}_{max}^{CH_3CN}$ of this reagent was 268nm. Prostaglandin E$_2$ was extracted from prostaglandin E$_2$-$\beta$-cyclodextrin using a Sep-pak $C_{18}$ cartridge. The prostaglandin E$_2$ was labeled with 2-bromoacetyl-triphenylene in aectonitrite using 18-crown-6-ether as catalyst. Derivatized prostaglandins were separated on a reversed-phase column (Radial-pak) $\mu$-Bondapak $C_{18}$ using acetonitrile: water=60:40 as mobile phase. The effluent was monitored by UV detector at 254nm filter kit. Linearity of calibration curve was obtained between 30ng and 140ng, and the lower limit of detection was 5ng.

  • PDF

Gold Shell Nanocluster Networks in Designing Four-Branch (1×4) Y-Shape Optical Power Splitters

  • Ahmadivand, Arash;Golmohammadi, Saeed
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.274-282
    • /
    • 2014
  • In this study, closely spaced Au nanoparticles which are arranged in nanocluster (heptamer) configurations have been employed to design efficient plasmonic subwavelength devices to function at the telecommunication spectrum (${\lambda}$~1550 nm). Utilizing two kinds of nanoparticles, the optical properties of heptamer clusters composed of Au rod and shell particles that are oriented in triphenylene molecular fashion have been investigated numerically, and the cross-sectional profiles of the scattering and absorption of the optical power have been calculated based on a finite-difference time-domain (FDTD) method. Plasmon hybridization theory has been utilized as a theoretical approach to characterize the features and properties of the adjacent and mutual heptamer clusters. Using these given nanostructures, we designed a complex four-branch ($1{\times}4$) Y-shape splitter that is able to work at the near infrared region (NIR). This splitter divides and transmits the magnetic plasmon mode along the mutual heptamers arrays. Besides, as an important and crucial parameter, we studied the impact of arm spacing (offset distance) on the guiding and dividing of the magnetic plasmon resonance propagation and by calculating the ratio of transported power in both nanorod and nanoshell-based structures. Finally, we have presented the optimal structure, that is the four-branch Y-splitter based on shell heptamers which yields the power ratio of 23.9% at each branch, 4.4 ${\mu}m$ decaying length, and 1450 nm offset distance. These results pave the way toward the use of nanoparticles clusters in molecular fashions in designing various efficient devices that are able to be efficient at NIR.

Sensitized Near IR Luminescence of Er(Ⅲ) Ion in Lanthanide Complexes Based on Diketone Derivatives: Synthesis and Photophysical Behaviors

  • Baek, Nam-Seob;Kwak, Bong-Kyu;Kim, Yong-Hee;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1256-1260
    • /
    • 2007
  • Two β-diketone derivatives bearing triphenylene (1-naphthalene-2-yl-3-triphenylen-2-yl-propane-1,3-dione (NTPD)) and naphthalene (1,3-di-naphthalene-2-yl-propane-1,3-dione (DNPD)) and their Ln(III) complexes (Ln = Er or Gd) were synthesized and their photophysical properties were investigated. The sensitized emission of Er3+ ion in Er3+-[NTPD]3(terpy) and Er3+-[DNPD]3(terpy) was observed upon excitation at absorption maximum of ligands. Their photophysical studies indicate the sensitization of Er3+ luminescence by energy transfer through the excited triplet state of β-diketone ligand. The energy transfer rate through the excited triplet state of β-diketone ligand to Er3+ ion occurs faster than that of the oxygen quenching rate.

Self-Assembled Chiral Structures of Discoid Organic Molecule on Au(111)

  • Kim, Ji-Hoon;Khang, Se-Jong;Kwon, Young-Kyun;Park, Yongsup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.280-280
    • /
    • 2013
  • Using both experimentaland theoretical methods, we have investigated the structural and electronic properties of self-assembled two-dimensional organic molecule (hexaaza-triphenylene-hexacarbonitrile, HATCN), which is used as an efficient OLED hole injection material, on Au(111) surfaces. Low-temperature scanning tunneling microscope (STM) measurements revealed that self-assembled linear and hexagonal porous structures are formed at atomic steps and terraces of Au(111), respectively. We also found that the hexagonal porous structure have chirality and forms only small (<1,000 nm2) phase-separated chiral domains that can easily change their chiral phase in subsequence STM images at 80 K. To explain these observations, we calculated the molecular-molecular and molecule-surface interaction energies by using first-principles density functional theory method. We found that the change of their chiral phase resulted from the competition between the two energies. These results have not only verified our experimental observations, but also revealed the delicate balance between different interactions that caused the self-assembed structures at the surface.

  • PDF

Study of Self-assembled Organic Layer Formation at the HATCN/Au Interface

  • Kim, Ji-Hoon;Won, Sangyeon;Kwon, Young-Kyun;Kahng, Se-Jong;Park, Yongsup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.150.2-150.2
    • /
    • 2013
  • We elucidate the mechanism of the self-assembled organic layer formation at the organic/metal interface of hexaaza-triphenylene-hexacarbonitrile (HATCN)/Au(111) by first-principles calculations and Lowtemperature scanning tunneling microscope (STM). In this work, we used HATCN to deposit organic material which is well known as an efficient OLED charge generation material. Low-temperature STM measurements revealed that self-assembled hexagonal porous structure is formed at terraces of Au(111). We also found that the hexagonal porous structure has chirality and forms only small (<1000 $nm^2$) phaseseparated chiral domains that can easily change their chiral phase in subsequence STM images at 80 K. To explain the mechanism of these observation, we calculated the molecular-molecular and molecule-surface interaction energies by using density functional theory method. We found that the change of their chiral phase resulted from the competition between the two energies. These results have not only verified our experimental observations, but also revealed the delicate balance between different interactions that caused the self-assembed structures at the surface.

  • PDF