• Title/Summary/Keyword: Triode Structure

Search Result 37, Processing Time 0.031 seconds

Fabrication of CNT FEA Self-aligned between Gate and Emitter using Screen Printing Method (스크린 프린팅 방법에 의해 게이트-에미터간 자체정렬된 3극 구조의 CNT FEA 제조)

  • Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.367-372
    • /
    • 2006
  • A carbon nanotube field emission display(CNT FED) panel with a 2 inch diagonal size was fabricated using a screen printing of a prepared photo-sensitive CNT paste and vacuum in-line sealing technology. After a surface treatment of the patterned CNT, only the carbon nanotube tips are uniformly exposed on the surface. The diameter of the exposed CNTs are usually about 20 nm. Using the photo-sensitive CNT paste, we have developed a triode type CNT FEA with a self-aligned gate-emitter structure. The turn on voltage was around 100 V which corresponds to according the turn on field of about $40V/{\mu}m$. By the creation of a self-aligned gate-emitter structure, it is expected that the screen printed photo-sensitive CNT paste is promising as a good candidate for the large size field emission display.

Fabrication and Characteristics of CNT-FEAs with Under-gate Structure

  • Noh, Hyung-Wook;Jun, Pil-Goo;Ko, Sung-Woo;Kwak, Byung-Hwak;Park, Sang-Sik;Lee, Jong-Duk;Uh, Hyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1470-1473
    • /
    • 2005
  • We proposed new triode-type Field Emitter Arays using Carbon NanoTubes(CNT-FEAs) as electron emission sources at low electric fields. The CNTs were selectively grown on the patterned catalyst layer by Plasma-Enhanced Chemical Vapor Deposition (PECVD). In this structure, gate electrodes are located underneath the cathode electrodes and extracted gate is surrounded by CNT emitters. Furthermore, in order to control density of CNTs, we investigated effect of using rapid thermal annealing (RTA).

  • PDF

Effect of Liquid Surface Treatments on Field Emission Properties of Carbon Nanotube Cathodes

  • Lee, Ji-Eon;An, Young-Je;Shin, Heon-Cheol;Chung, Won-Sub;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.486-489
    • /
    • 2007
  • Carbon nanotube (CNT) cathodes having a trench structure similar to the structure of the gated triodetype cathode were successfully fabricated by a screenprinting method with multi-walled carbon nanotubes. We observed that a liquid method not only readily removes the organic residues on the CNT films, but also satisfactorily protrudes the CNTs out of the electrode surface. The CNT cathodes prepared by the liquid method showed a turned-on field of $1.4\;V/{\mu}m$. The emission current density of them was about $3.1\;mA/cm^2$ at the electric field of $3\; V/{\mu}m$. The liquid method appears to be a promising surface treatment of CNT cathode for gated triode-type FEDs applications.

  • PDF

Fabrication of carbon nanotube electron beam (C-beam) for thin film modification

  • Kang, Jung Su;Lee, Su Woong;Lee, Ha Rim;Chung, Min Tae;Park, Kyu Chang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.171.1-171.1
    • /
    • 2015
  • Carbon nanotube emitters is very promising electron emitter for electron beam applications. We introduced the carbon nanotube electron beam (C-beam) exposure technic using triode structure. As a source, the electron beam emit from CNT emitters placed at the cathode by high electric field. Through the gate mesh, with high accelerating energy, the electron can be extracted easily and impact at the anode plate. For thin film modification, after the C-beam exposure on the amorphous silicon thin film, we found phase changes and it showed a high crystallinity from the Raman measurement. We expect that this crystallized film will be a good candidate as a new active layer of TFT.

  • PDF

Fabrication of CNT Electron Source for Field Emission Displays

  • Nakata, S.;Sawada, T.;Fujikawa, M.;Nishimura, K.;Abe, F.;Hosono, A.;Watanabe, S.;Yamamuro, T.;Shen, Z.;Suzuki, Y.;Okuda, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1012-1015
    • /
    • 2005
  • We have developed the technique of fabricating triode structure with simple stacking method using a polymer insulator that is suitable for large panel and the activation method after the fabrication. By the techniques, a test panel was manufactured and proves good emission property and uniformity.

  • PDF

3-dimensional Electric Field Analysis for Field Emission Devices (전계방출소자의 3차원 전계해석)

  • Kim, Yeong-Hoon;Jung, Jae-Hoon;Lee, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.662-664
    • /
    • 1997
  • 3-dimensional finite element method(FEM) electrical field analysis was performed to obtain electric fields on a field emission device tip in an array form. The simulation was performed by applying the Neumann boundary condition to the intermediate plane between tips. To verify our algorithm, comparison between simulation results and experimental data from another paper was made and the difference was discussed. Finally, analysis on triode structure was performed.

  • PDF

New CMOS Fully-Differential Transconductor and Application to a Fully-Differential Gm-C Filter

  • Shaker, Mohamed O.;Mahmoud, Soliman A.;Soliman, Ahmed M.
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.175-181
    • /
    • 2006
  • A new CMOS voltage-controlled fully-differential transconductor is presented. The basic structure of the proposed transconductor is based on a four-MOS transistor cell operating in the triode or saturation region. It achieves a high linearity range of ${\pm}\;1\;V$ at a 1.5 V supply voltage. The proposed transconductor is used to realize a new fully-differential Gm-C low-pass filter with a minimum number of transconductors and grounded capacitors. PSpice simulation results for the transconductor circuit and its filter application indicating the linearity range and verifying the analytical results using $0.35\;{\mu}m$ technology are also given.

  • PDF

LCD contrast ratio enhancement method using Carbon Nanotube Back Light Unit and Local Dimming (CNT-BLU Local Dimming 구동을 이용한 LCD Contrast 향상 방법)

  • Min, K.W.;Chung, D.S.;Song, B.G.;Kim, S.L.;Kang, H.S.;Baik, C.W.;Jeong, T.W.;Kim, J.W.;Jin, Y.W.;Cho, J.D.
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.971-972
    • /
    • 2006
  • We have demonstrated Carbon Nanotube Back Light Unit (CNT-BLU) which has a triode structure. Local dimming scheme was introduced to the BLU driving system. With this driving method, contrast ratio enhanced 20 times higher than that of conventional Cold Cathode Fluorescent Lamp (CCFL) BLU.

  • PDF

Study on HV Nano-second Pulse Electron Gun System (고전압 Nano-second펄스 전자총에 관한 연구)

  • Son, Y.K.;Park, S.J.;Jang, S.D.;Oh, J.S.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1391-1393
    • /
    • 1995
  • An electron gun system for the Pohang Light Source has been installed and operated successfully. The basic design parameters are acceleration voltage of 80 kV, maximum peak emission current of 5 A, minimum pulse width of 1 ns, and maximum repetition rate of 100 Hz. The gun has a triode structure and is composed of a cathode, a focusing electrode(Wehnelt), and an anode. To sustain a $5{\times}10^{-9}$Torr vacuum, a $230{\ell}/s$ Ion pump has been adopted. We adopted a control and monitoring system based on the fiber-optic technology. In this article, we present the structure and operation principle of the system with special interest on the nanosecond pulser, remote control and monitoring system.

  • PDF

Particle Simulation Modelling of a Beam Forming Structure in Negative-Ion-Based Neutral Beam Injector (중성빔 입사장치에서 빔형성 구조의 입자모사 모형)

  • Park, Byoung-Lyong;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.40-47
    • /
    • 1989
  • For the effective design of a beam forming structure of the negative-ion-based neutral beam injector, a computer program based on a particle simulation model is developed for the calculation of charged particle motions in the electrostatic fields. The motions of negative ions inside the acceleration tube of a multiple-aperture triode are computed at finite time steps. The electrostatic potentials are obtained from the Poisson's equation by the finite difference method. The successive overrelaxation method is used to solve the matrix equation. The particle and force weighting methods are used on a cloud-in-cell model. The optimum design of the beam forming structure has been studied by using this computer code for the various conditions of elctrodes. The effects of the acceleration-deceleration gap distance, the thickness of the deceleration electrode and the shape of the acceleration electrode on beam trajectories are exmined to find the minimum beam divergence. Some numerical illustrations are presented for the particle movements at finite time steps in the beam forming tubes. It is found in this particle simulation modelling that the shape of the acceleration electrode is the most significant factor of beam divergence.

  • PDF