• Title/Summary/Keyword: Tricholoma matsutake fungal colony

Search Result 4, Processing Time 0.021 seconds

Ergosterol and Water Changes in Tricholoma matsutake Soil Colony during the Mushroom Fruiting Season

  • Koo, Chang-Duck;Lee, Dong-Hee;Park, Young-Woo;Lee, Young-Nam;Ka, Kang-Hyun;Park, Hyun;Bak, Won-Chull
    • Mycobiology
    • /
    • v.37 no.1
    • /
    • pp.10-16
    • /
    • 2009
  • The purpose of this study is to understand spatio-temporal changes of active fungal biomass and water in Tricholoma matsutake soil colonies during the mushroom fruiting season. The active fungal biomass was estimated by analyzing ergosterol content at four different points within four replicated locations in a single circular T. matsutake colony at Ssanggok valley in the Sogri Mt. National Park in Korea during 2003 to 2005. The four points were the ahead of the colony, the front edge of the colony and 20 cm and 40 cm back from the front edge of the colony. Ergosterol content was 0.0 to 0.7 ${\mu}g$ per gram dried soil at the ahead, 2.5 to 4.8 ${\mu}g$ at the front edge, 0.5 to 1.8 ${\mu}g$ at the 20 cm back and 0.3 to 0.8 ${\mu}g$ at the 40 cm back. The ergosterol content was very high at the front edge where the T. matsutake hyphae were most active. However, ergosterol content did not significantly change during the fruiting season, September to October. Soil water contents were lower at the front edge and 20 cm back from the front edge of the colony than at the ahead and 40 cm back during the fruiting season. Soil water content ranged from 12 to 19% at the ahead, 10 to 11% at the edge, 9 to 11% at the 20 cm back and 11 to 15% at the 40 cm back. Our results suggest that the active front edge of the T. matsutake soil colony could be managed in terms of water relation and T. matsutake ectomycorrhizal root development.

Soil Water Monitoring in Below-Ground Ectomycorrhizal Colony of Tricholoma Matsutake

  • Koo, Chang-Duck;Kim, Je-Su;Lee, Sang-Hee;Park, Jae-In;Kwang- Tae Ahn
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.129-133
    • /
    • 2003
  • Water is critically important for Tricholoma matsutake(Tm) growth because it is the major component of the mushroom by over 90%. The mushroom absorbs water through the below ground hyphal colony. Therefore, the objectives of our study were to investigate spatio-temporal water changes in Tm colonies. This study was carried out at Tm fruiting sites in Sogni Mt National Park, where the below-ground mushroom colonies have been irrigated. To identify spatial water status within the Tm soil colony soil moisture and ergosterol content were measured at six positions including a mushroom fruiting position on the line of the colony radius. To investigate temporal soil moisture changes in the soil colony, Time Domain Reflectometry(TDR) sensors were established at the non-colony and colony front edge, and water data were recorded with CR10X data logger from late August to late October. Before irrigation, whereas it was 12.8% at non-colony, the soil water content within Tm colony was 8.0% at 0-5cm from the colony front edge, 6.2% at 10-15cm and 6.5-7.5% at 20-40cm. And the content was 12.1% at 80cm distance from the colony edge, which is similar to that at the non-colony. In contrast, ergosterol content which is proportional to the live hyphal biomass was only 0.4${\mu}g$/g fresh soil at the uncolonized soil, while 4.9 $\mu\textrm{g}$/g fresh soil at the front edge where the hyphae actively grow, and 3.8 ${\mu}g$/g fresh soil at the fruiting position, l.1${\mu}g$/g at 20cm distance and 0.4${\mu}g$/g in the 40cm rear area. Generally, in the Tm fungal colony the water content changes were reversed to the ergosterol content changes. While the site was watered during August to October, the soil water contents were 13.5∼23.0% within the fungal colony, whereas it was 14.5∼26.0% at the non-colony. That is, soil water content in the colony was lower by 1.0∼3.0% than that in the non-colonized soil. Our results show that Tm colony consumes more soil water than other parts. Especially the front 30cm within the hyphal colony parts is more critical for soil water absorption.

  • PDF

Spatiotemporal change in ectomycorrhizal structure between Tricholoma matsutake and Pinus densiflora symbiosis (송이와 소나무간의 공생관계(共生關係)에서 외생균근(外生菌根)의 시(時)-공간적(空間的) 구조변화(構造變化))

  • Koo, Chang-Duck;Kim, Je-Su;Park, Jae-In;Ka, Kang-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.389-396
    • /
    • 2000
  • To determine whether the Tricholoma matsutake (pine mushroom, Songyi) is symbiotic or parasitic to Pinus densiflora, structural change in their natural ectomycorrhizas were examined. The mycorrhizal samples were collected at three progressional points in the natural hypogeous colony(shiro) : colony front edge, near the fruiting point and 20cm back. The fine roots in the colonies were typical ectomycorrhizas with fungal mantle and Hartig net. However, the T. matsutake mycorrhizas had unique characteristics compared to other types of ectomycorrhizas. That is, spatially the fungal mantle and Hartig net of the T. matsutake mycorrhizas continued to develop along the growing tip, while temporally those structures declined to shrink changing to black brown in the older part of the roots behind the actively growing tip portion. However, there was no mark that the fungal hyphae penetrated into either the cortical cells, endodermal cell layers or stele. The apical tips of the blackened roots remained alive to form new mycorrhizas with other fungi later. Therefore, we conclude that the mycorrhiza of T. matsutake+P. densiflora is rather a dynamic symbiosis that changes its position spatiotemporally as the root grows than either a simple parasitism or symbiosis.

  • PDF

Effects of Climatic Condition in September on Pine-mushroom(Tricholoma matsutake) Yield and a Method for Overcoming the Limiting Factors in Korea (한국(韓國)에서 9월(月)의 기상인자(氣象因子)가 송이 발생(發生)에 미치는 영향(影響)과 그 극복방안(克服方案))

  • Park, Hyun;Kim, Kyo-Soo;Koo, Chang-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.479-488
    • /
    • 1995
  • Relationships between pine-mushroom(Tricholoma matsutake) yield and important climatic factors for the yield(such as monthly precipitation, relative humidity, temperature, and radiation percentage) were examined to find out limiting factors for pine-mushroom production and to develop a method for overcoming the factors by analyzing the yield and climate data for 17 years collected from 18 main regions of pine-mushroom production. Although there were variations among the production regions, climatic condition of September was the most significant factor for pine-mushroom yield in general, and the degrees of importance of each climatic factors were different among the production regions. Mean minimum temperature of September was positively correlated with pine-mushroom yield($$r^2{\geq_-}0.41$$) at the 1% level, of which were 9 regions such as Youngduck, Uljin, Samchuck, Bongwha arid so on. In these regions, vegetation control was expected to be effective for pine-mushroom production by allowing much sunlight penetration to the pine stand, which may increase soil temperature and keeping the temperature around the fungal colony in soil. Precipitation during September was positively correlated with pine-mushroom yield($$r^2{\geq_-}0.41$$) at Namwon, Moonkyung and Sangju. Thus, irrigation around fungal colony in dry soil during September would be effective for enhancing mushroom yield at the regions. Pine-mushroom yield of 1994 was quite low, similar to that of 1993, due to serious drought. In this period, we could manifest the possibility of enhancing pine-mushroom yield by irrigation for overcoming drought at Moonkyung and Keochang regions.

  • PDF