• Title/Summary/Keyword: Trichoderma isolates

Search Result 61, Processing Time 0.02 seconds

Molecular Identification, Enzyme Assay, and Metabolic Profiling of Trichoderma spp.

  • Bae, Soo-Jung;Park, Young-Hwan;Bae, Hyeun-Jong;Jeon, Junhyun;Bae, Hanhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1157-1162
    • /
    • 2017
  • The goal of this study was to identify and characterize selected Trichoderma isolates by metabolic profiling and enzyme assay for evaluation of their potential as biocontrol agents against plant pathogens. Trichoderma isolates were obtained from the Rural Development Administration Genebank Information Center (Wanju, Republic of Korea). Eleven Trichoderma isolates were re-identified using ribosomal DNA internal transcribed spacer (ITS) regions. ITS sequence results showed new identification of Trichoderma isolates. In addition, metabolic profiling of the ethyl acetate extracts of the liquid cultures of five Trichoderma isolates that showed the best anti-Phytophthora activities was conducted using gas chromatography-mass spectrometry. Metabolic profiling revealed that Trichoderma isolates shared common metabolites with well-known antifungal activities. Enzyme assays indicated strong cell wall-degrading enzyme activities of Trichoderma isolates. Overall, our results indicated that the selected Trichoderma isolates have great potential for use as biocontrol agents against plant pathogens.

Isozyme Analysis and Relationships Among Three Species in Malaysian Trichoderma Isolates

  • Siddiquee, Shafiquzzaman;Tan, Soon-Guan;Yusof, Umi-Kalsom
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1266-1275
    • /
    • 2010
  • Isozyme and protein electrophoresis data from mycelial extracts of 27 isolates of Trichoderma harzianum, 10 isolates of T. aureoviride, and 10 isolates of T. longibrachiatum from Southern Peninsular Malaysia were investigated. The eight enzyme and a single protein pattern systems were analyzed. Three isozyme and total protein patterns were shown to be useful for the detection of three Trichoderma species. The isozyme and protein data were analyzed using the Nei and Li Dice similarity coefficient for pairwise comparison between individual isolates, species isolate group, and for generating a distance matrix. The UPGMA cluster analysis showed a higher degree of relationship between T. harzianum and T. aureoviride than to T. longibrachiatum. These results suggested that the T. harzianum isolates had high levels of genetic variation compared with the other isolates of Trichoderma species.

Molecular and Morphological Characterization of Green Mold, Trichoderma spp. isolated from Oyster Mushrooms

  • Choi, In-Young;Hong, Seung-Beom;Yadav, Mahesh C.
    • Mycobiology
    • /
    • v.31 no.2
    • /
    • pp.74-80
    • /
    • 2003
  • Isolates of Trichoderma spp. collected from Pleurotus ostreatus and P. eryngii beds, which included loosened substrate compactness and development of green colour, were grouped into three species. The occurrence of different species of Trichoderma was as T. cf. virens(70.8%), T. longibrachiatum(16.7%) and T. harzianum(12.5%). The conidia of Trichoderma spp. were ellipsoidal, obovoid and phialides were bowling pins, lageniform and the length of phialides was $3.5{\sim}10.0{\times}1.3{\sim}3.3{\mu}m$. Phialides of T. cf. virens and T. harzianum were tending clustered, but it was solitary disposition in T. longibrachiatum. T. cf. virens was characterized by predominantly effuse conidiation, sparingly branched, and fertile to the apex and it was penicillate type. RAPD analysis could detect variability amongst three different species of Trichoderma using two newly designed URP-primers. However, intra-specific variation could not be detected in all the isolates except for rDNA sequence data classified Trichoderma isolates into three distinct groups representing three species. The profiles of rDNA sequences of isolates representing a species showed high similarity in T. cf. virens and T. harzianum. However, there was a variation in rDNA sequences of isolates representing T. longibrachiatum. The results of present study reveals that molecular techniques of RAPD and rDNA sequencing can greatly aid in classification based on morphology and precise identification of fast evolving species of Trichoderma.

In Vitro Antagonistic Characteristics of Bacilli Isolates against Trichoderma spp. and Three Species of Mushrooms

  • Kim, Wan-Gyu;Weon, Hang-Yeon;Seok, Soon-Ja;Lee, Kang-Hyo
    • Mycobiology
    • /
    • v.36 no.4
    • /
    • pp.266-269
    • /
    • 2008
  • Twenty isolates of Bacillus species obtained from livestock manure composts and cotton-waste composts were tested for their antagonistic effects in vitro against three green mold pathogens of mushrooms (Trichoderma harzianum, T. koningii, and T. viridescens). However, there exists a possibility Bacillus species may have antagonistic effects against mushrooms themselves, and thus the same 20 isolates were tested in vitro against three species of mushrooms (Flammulina velutipes, Lentinus edodes, and Pleurotus ostreatus). Of the 20 Bacillus species isolates tested, two inhibited mycelial growth of T. harzianum, seven that of T. koningii, and eight that of T. viridescens. Importantly, the bacterial isolates M27 and RM29 strongly inhibited mycelial growth of all the Trichoderma spp. isolates tested. The isolate M27 was subsequently identified as the most effective in inhibiting mycelial growth of all the Trichoderma species. Interesting results of the effect Bacillus isolates had upon the mushroom species followed. It was found that most Bacillus isolates except 5T33 at least somewhat inhibited mycelial growth of the three mushroom species or some of the mushrooms. Furhermore, the antagonistic effects of the bacterial isolates against the three species of mushrooms varied depending on the mushroom species, suggesting a role for mushroom type in the mechanism of inhibition. The bacterial isolates M27 and RM29 were identified as having the most antagonistic activity, inhibiting mycelial growth of all the Trichoderma spp. as well as mycelial growth of the three species of mushrooms. These results suggest that the bacterial isolates and their antagonistic effects on green mold pathogens should be further studied for their practical use for biological control of green mold in the growing room of the mushrooms.

Rapd Analysis of Trichoderma Isolates for Superior Selection for Biopesticide Preparation

  • Parvin, Shahnaj;Islam, Abu Taher Mohammad Shafiqul;Siddiqua, Mahbuba Khatoon;Uddin, Mohammad Nazim;Meah, Mohammad Bahadur
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.1
    • /
    • pp.35-43
    • /
    • 2011
  • Thirty five isolates of Trichoderma species collected from seven different locations of Bangladesh were studied for morphological characters and molecular variation. Mycelial diameters of the isolates varied from 8.28 cm to 9.00 cm. Based on colony colour, isolates were grouped into five such as dark green, green, light green, yellowish green and whitish green. Maximum isolates were green and light green. On the basis of growth habit and colony consistency, the isolates were categorized into three groups, in which most species had fast growth and were compact in appearance. PCR-based Random Amplified Polymorphic DNA (RAPD) technique employing 3 decamer primers produced 36 scorable bands of which all (100%) were polymorphic. The co-efficient of gene differentiation (Gst) was 1.0000 reflecting the existence of high level of genetic diversity among the isolates. The Unweighted Pair Group Method of Arithmetic Means (UPGMA) dendrogram constructed from Nei's (1972) genetic distance produced 2 main clusters (13 isolates in cluster 1 and 22 isolates in cluster 2). The result indicating their genetic diversity has opened new possibility of using the most efficient and more isolates of Trichoderma in the preparation of biopesticide and decomposition of municipality waste.

Application of Electrophoretic Methods for differentiation of Trichoderma species (전기영동법을 이용한 Trichoderma spp 분류가능성에 관한 연구)

  • Park W.M.;Park Y.H.;Lee E.Y.
    • Korean journal of applied entomology
    • /
    • v.23 no.2 s.59
    • /
    • pp.102-108
    • /
    • 1984
  • These researches were carried out to investigate the morphology of different species of Trichoderma and the possibilities of differentiation of the species of Trichoderma by electrophoretic methods. Variations between the isolates of a species of Trichoderma indicate the genetical differences, also isozyme and protein patterns will be useful to investigate genetical variations betweens the isolates. It might be possible that distinct bands of isozymes of esterase, phosphotase, catalase, catalase differentiate species of Trichoderma.

  • PDF

Morphological and Cultural Characteristics of Trichoderma spp. Associated with Green Mold of Oyster Mushroom in Korea

  • Park, Myung-Soo;Seo, Geon-Sik;Lee, Kang-Hyun;Bae, Kyung-Sook;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.221-228
    • /
    • 2005
  • A total of 179 isolates of Trichoderma spp. were collected from oyster mushroom substrates in Korea. On the basis of morphological and cultural characteristics, Trichoderma isolates were divided into seven groups, namely T. atroviride, T. citrinoviride, T. harzianum, T. longibrachiatum, T. virens, and two unidentified species, referred to as Trichoderma sp. 1 and 2. The predominant species was Trichoderma sp. 2 (n=86) followed by Trichoderma sp. 1 (n=52). Trichoderma sp. 1 and 2 were morphologically distinct not only from the other species of Trichoderma reported but also from each other in the characteristics such as mycelial growth rate, colony appearance, shape of conidia and conidiophores and branching pattern of phialides, although branching pattern of phialides of Trichoderma sp. 1 was similar to that of T. harzianum. In virulence test, the degree for compost colonization of Trichoderma sp. 2 was significantly greater than that of the other Trichoderma species. Trichoderma sp. 2 was found to be the main cause of green mold disease in oyster mushroom production. More work including molecular characterization is needed to confirm the species of Trichoderma sp. 1 and 2.

Isolation and Identification of Mushroom Pathogens from Agrocybe aegerita

  • Choi, In-Young;Choi, Jang-Nam;Sharma, Praveen K.;Lee, Wang-Hyu
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.310-315
    • /
    • 2010
  • Agrocybe aegerita is an important mushroom cultivated in Korea, with good feel and a peculiar fragrance. A. aegerita can be cultivated throughout the year using culture bottles but is more susceptible to contamination than other mushrooms. Twenty-two pathogens were isolated from the fruiting bodies and compost of A. aegerita, and seven isolates were isolated from Pleurotus ostreatus to compare with the A. aegerita isolates, collected from Gimje, Iksan, Gunsan of Chonbuk, and Chilgok of Gyeongbuk Province in 2009. These isolates were identified based on morphological and molecular characteristics. Of the 29 isolates, 26 were identified as Trichoderma spp. and the remaining three were Aspergillus spp., Mucor spp., and Penicillium spp. A phylogenetic analysis revealed that the 26 isolates of Trichoderma were divided into four taxa, namely T. harzianum, T. pleuroticola, T. longibrachiatum, and T. atroviride. Among the Trichoderma spp., 16 isolates (55.2%) were identified as T. harzianum, six as T. pleuroticola (20.7%), two as T. longibrachiatum, and the remaining two were T. atroviride.

Isolation and Characterization of Airborne Mushroom Damaging Trichoderma spp. from Indoor Air of Cultivation Houses Used for Oak Wood Mushroom Production Using Sawdust Media

  • Kim, Jun Young;Kwon, Hyuk Woo;Lee, Dong Hyeung;Ko, Han Kyu;Kim, Seong Hwan
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.674-683
    • /
    • 2019
  • Some species of the Trichoderma genus are reported as the major problem in oak wood mushroom production in Korea. In spite of economic loss by the fungi, scientific information on airborne Trichoderma species is not much available. To generate information for disease management development we analyzed airborne Trichoderma. A total of 1,063 fungal isolates were purely obtained from indoor air sampling of cultivation houses used for oak wood mushroom using sawdust media. Among the obtained isolates, 248 isolates were identified as Trichoderma fungi including T. harzianum, T. atroviride, T. citrinoviride, and T. pseudokoningii, by morphological and molecular analysis. T. harzianum was dominant among the four identified species. All the four Trichoderma species grew fast on solid nutrient media tested (potato dextrose agar [PDA], malt extract agar [MEA], Czapek's Dox + yeast extract agar [CYA] and cornmeal dextrose agar). Compact mycelia growth and mass spore production were better on PDA and CYA. In addition, T. harzianum and T. citrinoviride formed greenish and yellowish mycelium and spores on PDA and CYA. Greenish and yellowish pigment was saturated into PDA only by T. pseudokoningii. These four Trichoderma species could produce extracellular enzymes of sawdust substrate degradation such as β-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease. Their mycelia inhibited the growth of oak wood mushroom mycelia of two tested cultivars on dual culture assay. Among of eleven antifungal agents tested, benomyl was the best to inhibit the growth of the four Trichoderma species. Our results demonstrate that the airborne Trichoderma fungi need to be properly managed in the cultivation houses for safe mushroom production.

Judgement of Resistant Cultivar by Screening method for Resistance of Oyster Mushroom to Trichoderma disease in vitro (푸른곰팡이균의 저항성 품종 검정방법에 의한 느타리버섯 균주의 저항성 판별)

  • Jhune, Chang-Sung;Leem, Hoon-Tae;Lee, Chan-Jung;Kong, Won-Sik;Jang, Kab-Yeul;Sung, Gi-Ho
    • Journal of Mushroom
    • /
    • v.9 no.4
    • /
    • pp.170-179
    • /
    • 2011
  • In coculturing with strains of Trichoderma and oyster mushroom, we could detect the difference in the resistance of oyster mushroom against Trichoderma with the phenomena of barrage reaction, overgrowth and lysis. We selected the isolates ASI 2183, ASI2504 and ASI 2477 as varieties that showed the resistance. The isolates ASI 2240, ASI 2479 and ASI 2181 were the best in their resistance against Trichoderma in the method using culture filtrate. In common, the isolates ASI 2479 and ASI 2240 were selected in both methods. In post-inoculation method, the isolates ASI 2479, ASI 2333 and ASI 2181 were selected and ASI 2302 was susceptible. For the same isolate of Trichoderma, the resistance varied depending on the isolates of oyster mushroom used in the experiments. Because we could detect the interactions between Trichoderma and oyster mushroom, it is possible to detect the level of the resistance that differs in the varieties. However, there were the cases of detecting the level of the resistance in repetitions with the same isolate, which may be caused by the vitality of isolates of Trichoderma and oyster mushroom. It is efficient to test the resistance with the resistant isolate of Pleurotus salmoneostramine and the susceptible isolate of ASI 2302.