• Title/Summary/Keyword: Trichloroacetonitrile

Search Result 5, Processing Time 0.022 seconds

Subchronic Inhalation Toxicity of Trichloroacetonitrile on the Sprague Dawley Rats

  • Han, Jeong-Hee;Chung, Yong-Hyun;Lim, Cheol-Hong
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.203-211
    • /
    • 2015
  • Trichloroacetonitrile is used as an intermediate in insecticides, pesticides, and dyes. In Korea alone, over 10 tons are used annually. Its oral and dermal toxicity is classified as category 3 according to the globally harmonized system of classification and labelling of chemicals, and it is designated a toxic substance by the Ministry of Environment in Korea. There are no available inhalation toxicity data on trichloroacetonitrile. Thus, the present study performed inhalation tests to provide data for hazard and risk assessments. Sprague-Dawley rats were exposed to trichloroacetonitrile at concentrations of 4, 16, or 64 ppm for 6 hour per day 5 days per week for 13 weeks in a repeated study. As a result, salivation, shortness of breath, and wheezing were observed, and their body weights decreased significantly (p < 0.05) in the 16 and 64 ppm groups. All the rats in 64 ppm group were dead or moribund within 4 weeks of the exposure. Some significant changes were observed in blood hematology and serum biochemistry (e.g., prothrombin time, ratio of albumin and globulin, blood urea nitrogen, and triglycerides), but the values were within normal physiological ranges. The major target organs of trichloroacetonitrile were the nasal cavity, trachea, and lungs. The rats exposed to 16 ppm showed moderate histopathological changes in the transitional epithelium and olfactory epithelium of the nasal cavity. Nasal-associated lymphoid tissue (NALT) and respiratory epithelium were also changed. Respiratory lesions were common in the dead rats that had been exposed to the 64 ppm concentration. The dead animals also showed loss of cilia in the trachea, pneumonitis in the lung, and epithelial hyperplasia in the bronchi and bronchioles. In conclusion, the no-observed-adverse-effect level (NOAEL) was estimated to be 4 ppm. The main target organs of trichloroacetonitrile were the nasal cavity, trachea, and lungs.

A New Method for Synthesizing Tetrazoles from Secondary Amines using Trichloroacetonitrile (이차 아민으로부터 트리클로로아세토니트릴을 사용한 테트라졸 유도체의 새로운 합성법)

  • Oh, Su-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.781-787
    • /
    • 2017
  • A new method for synthesizing the tetrazole derivatives from secondary amines through cyanation/tetrazolation has been developed. Trichloroacetonitrile is used as the cyano source to synthesize N-nitrile instead of highly toxic and expensive cyanogen bromide. In this protocol, the reaction of secondary amines with various substituents proceed smoothly, and the desired tetrazole derivatives are obtained directly in fair to high yields without isolation of intermediate cyanamides.

Simultaneous Fluorimetric Determination of On-line Preconcentrated HANs, DCAD and TCAD by Using RPLC with a Postcolumn Derivatization System

  • Jung, Sung-Woon;Choi, Yong-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1783-1790
    • /
    • 2013
  • A simultaneous analytical method has been developed for the fluorimetric determination of haloacetonitriles (HANs) [dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), dibromoacetonitrile (DBAN), haloacetamides [dichloroacetamide (DCAD), and trichloroacetamde (TCAD)] in drinking water by using the combined on-line perconcentration/reversed phase liquid chromatography (RPLC)-postcolumn detection system. This on-line perconcentration system was achieved by employing a precolumn packed with a commercial solid phase extraction (SPE) sorbent for the enrichment and purification of the target analytes. The haloacetonitriles and haloacetamides were separated on CN analytical column in a 7.5% methanol-0.02 M phosphate buffered mobile phase at pH 3. The column effluents were reacted with postcolumn reagents of ophthaldialdehyde (OPA) and sulfite ion at pH 11.5, to produce a highly fluorescent isoindole fluorophore, which were measured with a fluorescence detector. Under the optimized conditions for RPLC and the postcolumn derivatization system all of the coefficient of determination of the standard calibration curves for the target analytes were over 0.99 and had a linear range from 5 to 100 ${\mu}g/L$. The detection limits showed 1.6 ${\mu}g/L$ for DCAD, 0.1 ${\mu}g/L$ for TCAD, 0.6 ${\mu}g/L$ for DCAN, 1.6 ${\mu}g/L$ for TCAN and 1 ${\mu}g/L$ for DBAN, and the recoveries were ranged from 64 to 99% except for DCAD with precisions less than 4.9% in distilled water, and from 72(${\pm}4%$) to 116%(${\pm}2%$) in tap water.