DOI QR코드

DOI QR Code

Simultaneous Fluorimetric Determination of On-line Preconcentrated HANs, DCAD and TCAD by Using RPLC with a Postcolumn Derivatization System

  • Received : 2013.03.04
  • Accepted : 2013.03.20
  • Published : 2013.06.20

Abstract

A simultaneous analytical method has been developed for the fluorimetric determination of haloacetonitriles (HANs) [dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), dibromoacetonitrile (DBAN), haloacetamides [dichloroacetamide (DCAD), and trichloroacetamde (TCAD)] in drinking water by using the combined on-line perconcentration/reversed phase liquid chromatography (RPLC)-postcolumn detection system. This on-line perconcentration system was achieved by employing a precolumn packed with a commercial solid phase extraction (SPE) sorbent for the enrichment and purification of the target analytes. The haloacetonitriles and haloacetamides were separated on CN analytical column in a 7.5% methanol-0.02 M phosphate buffered mobile phase at pH 3. The column effluents were reacted with postcolumn reagents of ophthaldialdehyde (OPA) and sulfite ion at pH 11.5, to produce a highly fluorescent isoindole fluorophore, which were measured with a fluorescence detector. Under the optimized conditions for RPLC and the postcolumn derivatization system all of the coefficient of determination of the standard calibration curves for the target analytes were over 0.99 and had a linear range from 5 to 100 ${\mu}g/L$. The detection limits showed 1.6 ${\mu}g/L$ for DCAD, 0.1 ${\mu}g/L$ for TCAD, 0.6 ${\mu}g/L$ for DCAN, 1.6 ${\mu}g/L$ for TCAN and 1 ${\mu}g/L$ for DBAN, and the recoveries were ranged from 64 to 99% except for DCAD with precisions less than 4.9% in distilled water, and from 72(${\pm}4%$) to 116%(${\pm}2%$) in tap water.

Keywords

References

  1. Kim, H. S.; Yoon, J. Y.; Yeom, C. M. Kor. Soc. Wat. Wast. 2000, 16, 585.
  2. Glatz, B. A. J. AWWA 1978, 70(8), 465.
  3. Chen, A. M. Science 1980, 207(4), 90. https://doi.org/10.1126/science.6985746
  4. Oliver, B. G. J. AWWA 1983, 17(2), 80.
  5. Krasner, S. W.; McGuire, M. J.; Jacangelo, J. G. et al., J. AWWA 1989, 80(8), 41.
  6. Singer, P. C. J. Environ. Engineer. 1993, 120, 727.
  7. Reckhow, D. A.; Singer, P. C. J. AWWA 1984, 76(4), 151.
  8. US EPA. Federal register, US EPA 1994.
  9. Ozawa, H. J. Chromatogr. 1993, 644, 375. https://doi.org/10.1016/0021-9673(93)80722-K
  10. Mueller, M. G.; Wagner E. D.; Mccalla, K.; Richardson, S. D.; Woo, Y. K.; Plewa, M. J Environ. Sci. Technol. 2007, 41, 645-651. https://doi.org/10.1021/es0617441
  11. Park, H.; Kim, C. M.; Chang, H. S.; Kim, H. S.; Park, C. M.; Yu, B. J. J. of KSEE 2006, 28(10), 1031.
  12. Chung, Y.; Shin, D. C.; Lim, Y. W.; Kim, J. S.; Park, Y. S. Kor. J. Environ. Tox. 1997, 12(3), 23.
  13. Son, H. J.; Roh, J. S.; Bae, S. D.; Choi, Y. I.; Jung, C. W. J. of KSEE 2007, 29(4), 412.
  14. Choi, S. N.; Kwak, S. Y.; Pyo, H. S.; Kim, J. H.; Moon, M. H. J. of KSEE 2007, 29(6), 630.
  15. Yeom, C. M.; Choi, Y. S.; Beon, S. J.; Cho, S. H.; Yoon, J. Y. Kor. Soc. Wat. Wast. 2002, 16(2), 169.
  16. Park, S. J.; Pyo, H. S.; Park, S. S. A Study on the Analytical Method and National Surveys of Trace Hazardous Compounds in Drinking Water, 5th ed.; KAIST Report: 1997.
  17. Yeom, C. M.; Choi, Y. S.; Cho, S. H.; Yoon, J. Y. J. Kor. Soc. Water Qual. 2003, 19(1), 127-133.
  18. Lee, K. J.; Hong, J. E.; Pyo, H. S.; Park, S. J.; You, J. G.; Lee, D. W. Anal. Sci. Tech. 2003, 16(3), 249.
  19. Park, Y. S. M.D. Thesis, Yonsei University, 1996.
  20. Kim, J. S. M.D. Thesis, Yonsei University, 1996.
  21. Alouini, Z.; Seux, R. Wat. Res. 1987, 21(3), 335-343. https://doi.org/10.1016/0043-1354(87)90213-2
  22. Glezer, V.; Harris, B.; Tal, N.; Iosefzon, B.; Lev, O. Wat. Res. 1999, 33(8), 1938. https://doi.org/10.1016/S0043-1354(98)00361-3
  23. Kezdy, F.; Bruylants, A. Bull. Soc. Chim. Belg. 1960, 69, 602.
  24. Mersaar, U.; Bratt, L. Acta Chem. Scand. 1974, A28(7), 715.
  25. U.S. EPA Method 552, 1990.
  26. U.S. EPA Method 552.1, 1992.
  27. U.S. EPA Method 552.2, 1992.
  28. Barron, L.; Paull, B. Anal. Chem. 2004, 522, 153.
  29. Martinez, D.; Borrull, F.; Calull, M. J. Chromatogr. 1999, 853,187.
  30. Martinez, D.; Borrull, F.; Calull, M. J. Chromatogr. 1998, 827, 105. https://doi.org/10.1016/S0021-9673(98)00752-3
  31. Sun, Y. X.; Gu, P. J. Environ. Sci. Technol. 2007, 19, 885.
  32. Lopez-Avila, V.; Goor, T.; Gas, B.; Coufal, P. J. Chromatogr. 2003, 993, 143. https://doi.org/10.1016/S0021-9673(03)00333-9
  33. Richardson, S. D.; Thruston, A. D.; Caughran, T. V.; Chen, P. H.; Colette, T. W.; Floyd, T. L.; Schenck, K. M.; Lykins, B. W.; Sun, G.-R.; Majetich, G. Environ. Sci. Technol. 1999, 33(19), 3378. https://doi.org/10.1021/es9900297
  34. Rapp, T. M.D. Thesis, University of Massachusetts, 2000.
  35. Choi, Y. W.; Rekhow, D. A. Bull. Korean Chem. Soc. 2004, 25(6),900. https://doi.org/10.5012/bkcs.2004.25.6.900
  36. Kai, M.; Kojima, E.; Ohkura, Y. J. Chromatogr. A 1993, 653, 235. https://doi.org/10.1016/0021-9673(93)83179-V