• Title/Summary/Keyword: Triceps brachii

Search Result 97, Processing Time 0.022 seconds

Characteristics of the Muscular Activities with Elbow Orthosis using Pneumatic Rubber Muscle (공압 고무 엑츄에이터를 장착한 주관절 보조기 착용에 따른 상지 근력 특성)

  • Hong, K.J.;Kim, K.;Kwon, T.K.;Kim, D.W.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.825-831
    • /
    • 2007
  • An elbow orthosis with a pneumatic rubber actuator has been developed to assist and enhance upper limb movements and has been examined for the effectiveness. The effectiveness of the elbow orthosis was examined by comparing muscular activities during alternate dumbbell curl exercises with and without the orthosis. The subjects participated in the experiment were younger adults in their twenties. The subjects were instructed to perform dumbbell curl motion in a sitting position with and without orthosis in turn and a dynamometer was used to measure elbow joint torque outputs in an isovelocity mode. The measurements were done with four various dumbbell loads: 0 kg, 1 kg, 3 kg, and 5 kg. The orthosis was pneumatically actuated and controlled in a passive mode. The most comfortable air pressure to the pneumatic actuator was determined to be 0.294MPa. Electromyography(EMG) was also measured during curl exercises. The muscles of interest were biceps brachii(BB), triceps brachii(TB), brachioradialis(Bo), and flexor carpi ulnaris(FCU) in the upper limbs. The experimental results showed that the muscular activities themselves significantly reduced with elbow orthosis on in performing similar activities without orthosis. As a result of this experiment, the effectiveness of the developed upper limb orthosis was confirmed and the level of assistance was quantified.

Electromyographic comparison of modified push-up exercise: focused on various arm position

  • Kim, You-Sin;Yang, Jae-Young;Lee, Nam-Ju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • This study was to investigate the difference of muscle activities in trunk, upper arm, and shoulder during push-up exercise based on 3 types of different arm position(posterior position, PP; normal position, NP; and anterior position, AP) and to provide effective push-up arm position for each muscle development. Fifteen healthy males(age, $21.5{\pm}0.5years$; height, $172.7{\pm}1.0cm$; body mass, $70.5{\pm}1.3kg$; shoulder width, $42.3{\pm}0.6cm$; and BMI, $23.6{\pm}0.5kg/m^2$) participated in this study. PP, NP, and AP of the arm were used to conduct push-up exercise and 8 muscles(deltoideus p. acromialis: DA; pectoralis minor: PMI; pectoralis major: PMA; serratus anterior: SA; biceps brachii: BB; triceps brachii: TB; latissimus dorsi: LD; and infraspinatus: IS) of right side were selected to measure muscle activities. Total 9 counts of push-up exercise were conducted and EMG data signals of 5-time(from $3^{th}$ to $7^{th}$) push-up movement were used for measuring muscle activities. PP push-up exercise showed that there was a significantly higher muscle activity of DA, PMI, PMA, SA, BB, LD, and IS(p<.05) and AP push-up exercise showed a significantly higher TB activity(p<.05). It would be suggested that different arm position evokes various muscle activities when conducting push-up exercise. PP would be the best push-up arm position for inducing various trunk, upper arm, and shoulder muscle activities compared to NP and AP.

A Study of Sensing Locations for Self-fitness Clothing base on EMG Measurement (셀프 피트니스 의류 개발을 위한 근전도 센싱 위치 연구)

  • Cho, Hakyung;Cho, Sangwoo
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.755-765
    • /
    • 2016
  • Recently, interest in monitoring health and sports is growing because of the emphasis on wellness, which is accelerating the development and commercialization of smart clothing for biosignal monitoring. In addition to exerciseeffect monitoring clothing that tracks heart rate and respiration, recently developed clothing makes it possible to monitor muscle balance using electromyogram (EMG). The electrode for EMG have to attached to an accurate location in order to obtain high-quality signals in surface EMG measurement. Therefore, this study develops monitoring clothing suitable for different types of human bodies and aims to extract suitable range of EMG according to movements in order to develop self-fitness monitoring clothing based on EMG measurement. This study identified and attached electrodes on six upper muscles and two lower muscles of ten males in their 20s. After selecting six main motions that create a load on muscles, the 8-ch wireless EMG system was used to measure amplitude value, noise, SNR and SNR (dB) in each part and statistical analysis was conducted using SPSS 20.0. As a result, the suitable range for EMG measurement to apply to clothing was identified as four parts in musculus pectoralis major; three parts in muscle rectus abdominis, two parts each in shoulder muscles, backbone erector, biceps brachii, triceps brachii, and musculus biceps femoris; and four part in quadriceps muscle of thigh. This was depicted diagrammatically on clothing, and the EMG-monitoring sensing locations were presented for development of self-fitness monitoring.

Comparison of EMG Activity during Horticulture Motion and Rehabilitation Motion of Upper Limb

  • Seong-Kwang Yoo;Seung-Hwa Jung;Jae-Soon Kim;Sun-Jin Jeong;Yong-Ku Kang;Yeo-Jin Jeong;Eun-Ha Yoo;Dae-Sung Park
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.400-408
    • /
    • 2022
  • Objective: The purpose of this study is to compare EMG activity during horticulture motion and upper limb rehabilitation motion, to confirm whether horticulture motion is suitable for upper extremity rehabilitation of hemiparesis. Design: Three-group cross-sectional design. Methods: The 45 subjects were divided into three groups: hemiparesis (n=15), elderly (n=15) and healthy (n=15). We have recorded EMG signals of six upper limb muscles Upper trapezius (UT), Middle deltoid (MD), Anterior deltoid (AD), Biceps brachii (BB), Triceps brachii (TB), Brachioradialis (BR) during horticultural motions and three upper limb rehabilitative motions. The dependent variables were peak EMG, integral EMG, co-contraction ratio. A two-way repeated measures ANOVA was used to compare the horticultural motion and rehabilitation motion of the three groups. Results: The peak EMG was significantly different in MD, AD, BB, TB according to the motion(p<0.05), and the UT, BB were significant differences according to the group(p<0.05). The integral EMG was significantly different in MD, AD, BB, TB, BR according to the motion(p<0.05), and the BB were significant differences according to the group(p<0.05). The co-contraction ratio was significantly different in TB/BB according of the motion, and there was no difference between the groups. Conclusions: As a result of this study, horticultural motion alone was insufficient for upper arm rehabilitation, and horticultural motion alone was insufficient to induce continuous activity of the forearm.

Comparison of Upper Extremity Muscle Activity between Stroke Patients and Healthy Participants while Performing Bimanual Tasks

  • Namwoo Kim;Sungbae Jo;Kyeong Bae;Changho Song
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.526-534
    • /
    • 2022
  • Objective: The purpose of this study was to compare muscle activities of stroke patients and healthy participants during bimanual tasks. Design: A cross sectional study. Methods: A total of 25 participants (13 hemiparetic stroke patients and 12 healthy participants) were recruited. The muscle activities using electromyogram (EMG) during bimanual tasks were collected from the following muscles: extensor carpi radialis longus (ECRL), biceps brachii (BB), and triceps brachii (TB). The bimanual tasks included eight tasks consisted of (1) raising the wrists up and down, (2) supinating and pronating the palms, (3) touching the shoulder with fingertips, (4) drawing vertical dot, (5) reaching for a cup and bring it in to drink, (6) drawing a circle outward and (7) inward, and (8) grasping the fingers. The EMG data collected from the muscles of paretic and non-paretic sides of stroke patients and the average from both sides of healthy subjects were normalized and compared after calculating the percentage of maximal isometric voluntary contraction. Results: The ECRL, BB and TB of the paretic side of the stroke patients showed relatively greater muscle activity compared to the non-paretic side as well asaverage of the healthy subject duringall tasks (p<0.05). In addition, the ECRL showed the highest muscle activity during most of the tasks. All of the non-paretic side musclesfrom stroke patients showed higher muscle activity compared to those of healthy subjects. Conclusions: The current study showed that muscle activities of upper extremity varied between paretic and non-paretic sides of stroke patients during bimanual tasks. Interestingly, the non-paretic side muscle activities were also different from those of normal participants.

Effects of Robot-Assisted Arm Training on Muscle Activity of Arm and Weight Bearing in Stroke Patients (로봇-보조 팔 훈련이 뇌졸중 환자의 팔에 근활성도와 체중지지에 미치는 영향)

  • Yang, Dae-jung;Lee, Yong-seon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.71-80
    • /
    • 2022
  • Background: This study investigated the effect of robot-assisted arm training on muscle activity of arm and weight bearing in stroke patients. Methods: The study subjects were selected 20 stroke patients who met the selection criteria. 10 people in the robot-assisted arm training group and 10 people in the task-oriented arm training group were randomly assigned. The experimental group performed robot-assisted arm training, and the control group performed task-oriented arm training for 6 weeks, 5 days a week, 30 minutes a day. The measurement tools included surface electromyography and smart insole system. Data were analyzed using independent sample t-test and the paired sample t-test. Results: Comparing the muscle activity of arm within the group, the experimental group and the control group showed significant differences in muscle activity in the biceps brachii, triceps brachii, anterior deltoid, upper trapezius, middle trapezius, and lower trapezius. Comparing the muscle activity of arms between the groups, the experimental group showed significant difference in all muscle activity of arm compared to the control group. Comparing the weight bearing within the groups, the experimental group showed significant difference in the affected side and non-affected side weight bearings and there were significant differences in anterior and posterior weight bearing. The control group showed significant difference only in the non-affected side weight bearing. Comparing the weight bearings between groups, the experimental group showed significant difference in the affected side and non-affected side weight bearings compared to the control group. Conclusion: This study confirmed that robot-assisted arm training applied to stroke patients for 6 weeks significantly improved muscle activity of arm and weight bearing. Based on these results, it is considered that robot-assisted arm training can be a useful treatment in clinical practice to improve the kinematic variables in chronic stroke patients.

Wheelchair-based New Millennium Health Gymnastics: Muscle Activity and Upper Limbs Coordination by Elbow Exercise Velocity (휠체어 새천년 건강체조의 팔꿈치 운동속도에 따른 상지협응과 근활성도 변화)

  • Lee, Kang-Jin;Kim, Tack-Hoon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.2
    • /
    • pp.161-170
    • /
    • 2014
  • PURPOSE: This study concerns the wheelchair-based rehabilitation of elderly people, investigating muscle activity and coordination of upper limbs during wheelchair-based new millennium health gymnastics with varying elbow exercise velocity. METHODS: Twelve elderly people participated in new millennium gymnastics twice per week during 12-weeks. The group was separated into 0.4, 1.0, and 1.6 Hz groups (controlled by the metronome speed). Range of motion was measured by electrogoniometer, electromyography signals used root mean square values. The data application was normalized using reference voluntary contraction (%RVC). Upper limb (wrist and elbow joint) data gathered while standing up after the "falling on hips" was investigated in terms of coordination of angle-angle plots. One-way ANOVA, paired t-test and Scheffe's post hoc comparisons, were used for statistical analyses. RESULTS: There were results taken before and after the experiments. The results demonstrated a significant improvement in the triceps brachii and flexor carpi radialis of the 0.4 Hz group (p<.05). There was significant difference in the triceps brachi of the 1 Hz group. No significant differences were found in all muscles of the 1.6 Hz group. Muscle co-activation indexes of the 0.4 Hz group were larger than the others. The 0.4 Hz graph was turning point synchronized clockwise. The 1 Hz graph was out of phase with the negative slope. The 1.6 Hz graph was turning point synchronized counterclockwise, and uncontrolled factor phase was offset on angle-angle plots. CONCLUSION: It is found that improvement of muscle activity and upper limbs coordination of elderly people using wheelchair-based new millennium gymnastics is optimal with elbow exercise velocity with a frequency of 0.4 Hz.

Comparative Study of Biomechanical Left and Right Elbow Joint Extension Movements After Wheel Axle Application (윤축을 적용한 좌·우 주관절 신전 동작의 운동역학적 비교 연구)

  • Kim, Sung-Joo
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.429-436
    • /
    • 2011
  • In this study, we have experimented with 9 players at the national delegate level. Although there were some differences in the average effects of 3 types of one-two straight movements after the application of wheel axle, there were no statistical differences in the case of surface reacting forces, electromyograms, and impact forces. When the right fist was impacted using the one-two straight movements and the wheel axle was applied with 3 segmentations, high impact forces were obtained for the pronation in the following order-72.01 $m/s^2$ (type 2), 70.93 $m/s^2$ (type 3), and 58.19 $m/s^2$ (type 1). Higher values of the surface reacting force were found for type 1 that did not exhibit pronation in the left foot, whereas in the case of the vertical direction of the right foot, type 2 with pronation exhibited higher values and impact forces. In the right electromyogram, high impact forces due to the activation of the muscular electric potential were obtained for lumbar erector (LE) spinae and triceps brachii (TB) with type 1; LE spina, latissimus dosi (LD), and upper trapezius (UT) with type 2; and brachioradialis (BR), UT, and rectus abdominal (RA) with type 3. Due to pronation and complex motions of the 3 pronation segmentations, the efficiency was higher for impacts due to one-two straight movements.

Design and Implementation of Electromyographic Sensor System for Wearable Computing (웨어러블 컴퓨팅을 위한 근전도 센서 시스템의 설계 및 구현)

  • Lee, Young-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.114-120
    • /
    • 2018
  • In this paper we implemented an EMG sensor system for wearable devices to obtain and analyze of EMG signals. The performance of the implemented sensor system is evaluated by the correlation analysis of muscle fatigue and muscle activation to clinical EMG system and compared with power consumption of the measured power of our system and commercial systems. In experiments with biceps and triceps brachii of 5 objects, The correlation values of muscle fatigue and muscle activation between our system and the clinical EMG system is 1.1~1.4 and about 1.0, respectively. And also the power consumption of our system is 25~50% less than that of some commercial EMG sensor systems.

Study on the Skin of Hand Lesser Yang from the Viewpoint of Human Anatomy

  • Park, Kyoung-Sik
    • The Journal of Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.69-73
    • /
    • 2015
  • Objectives: This study was carried out to analyse the skin of the Hand lesser yang in human. Methods: The Hand lesser yang meridian was labeled with latex in the body surface of the cadaver, subsequently dissecting a body among superficial fascia and muscular layer in order to observe internal structures. Results: This study has come to the conclusion that a depth of the skin has encompassed a common integument and a immediately below superficial fascia, and this study established the skin boundary with adjacent structures such as relative muscle, tendon as compass. The skin area of the Hand lesser yang in human is as follows: The skin close to the ulnar root angle of 4th finger nail, above between 4th and 5th metacarpal bone, between extensor digit. minimi tendon(t.) and extensor digit. t., extensor digit. m(muscle). at 2, 4, 7 cun above dorsal carpal striation, triceps brachii m. t., deltoid m., trapezius m., just around the ear, upper orbicularis oculi m. Conclusions: The skin area of the Hand lesser yang from anatomical viewpoint seems to be the skin area outside the superficial fascia or the muscle involved in the pathway of the Hand lesser yang meridian, the collateral meridian, the meridian muscle, with the condition that we consider adjacent skins.