• Title/Summary/Keyword: Tribology coating

Search Result 249, Processing Time 0.021 seconds

Tribological properties of ultra-thin diamond-like carbon coating at various humidity

  • Cuong, Pham Duc;Ahn, Hyo-Sok;Kim, Choong-Hyun;Kim, Doo-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.161-162
    • /
    • 2002
  • This study concerns the tribological behaviors of ultra-thin DLC coating with 3 nm thickness deposited in a mixed gas of argon + 20 % hydrogen as a function of humidity. Reciprocating wear tests employing a micro wear tester were performed under various normal loads and relative humidity in air environment. The chemical composition of the original and worn surfaces were studied by Auger electron spectroscopy (AES). It showed that the ultra-thin DLC coating exhibited low friction with enough wear stability at low normal load (0.18 N) and its tribological behavior was strongly dependent on the humidity. The sample surfaces before and after the test were examined using atomic force microscopy (AFM). Capillary force and meniscus areas were discussed in order to explain the influence of humidity on the friction force.

  • PDF

Tribology Coating Study of Thick DLC (ta-C) Film (DLC (ta-C) 후막코팅을 위한 트라이볼로지 코팅 연구)

  • Jang, Young-Jun;Kang, Yong-Jin;Kim, Gi Taek;Kim, Jongkuk
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.125-131
    • /
    • 2016
  • In recent years, thick ta-C coating has attracted considerable interest owing to its existing and potential commercial importance in applications such as automobile accessories, drills, and gears. The thickness of the ta-C coating is an important parameter in these applications. However, the biggest problems are achieving efficient coating and uniformity over a large area with high-speed deposition. Feasibility is confirmed for the ta-C coating thickness of up to 9.0 µm (coating speed: 3.0 µm/h, fixed substrate) using a single FCVA cathode. The thickness was determined using multiple coating cycles that were controlled using substrate temperature and residual stresses. In the present research, we have designed a coating system using FCVA plasma and produced enhanced thick ta-C coating. The system uses a specialized magnetic field configuration with stabilized DC arc plasma discharge during deposition. To achieve quality that is acceptable for use in automobile accessories, the magnetic field, T-type filters, and 10 pieces of a multi-cathode are used to demonstrate the deposition of the thick ta-C coating. The results of coating performance indicate that uniformity is ±7.6 , deposited area is 400 mm, and the thickness of the ta-C coating is up to 5.0 µm (coating speed: 0.3 µm/h, revolution and rotation). The hardness of the coating ranges from 30 to 59 GPa, and the adhesion strength level (HF1) ranges from 20 to 60 N, depending on the ta-C coating.

Wear Characteristics of TiN Coating by Plasma Enhanced CVD (PECVD에 의한 TiN 코팅의 마모특성 연구)

  • Song, Kun;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.116-125
    • /
    • 1990
  • An experimental programme was established to determine the wear behaviour of TiN coatings of thickness 1 $\mu$m and 3 $\mu$m. by PECVD with the variation of applied load, sliding velocity and sliding distance. It was shown that oxidation of transferred metal as sliding speed increased formed oxide film so that it contributed in decreasing the wear rate. With the roller-on-disc tribometer employed, the wear rate of the roller specimen was decreased with the increase in sliding distance due to the reduction in effective contact pressure. Finally, the severe cracks concentrated at the trailing edge of contact surface were explained in terms of high tensile stress prevailing at the trailing edge of the contact and were identified as a dominant wear mechanism as well as the strong local welding between coating layer and the counter surface, leading to the debonding of the coating layer.

An Experimental Study on the Rolling Resistance of Bearing Surfaces Coated by Pure Tin and Zinc Films (주석 및 아연 박막이 코팅된 베어링 표면의 구름 저항 거동에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • An experimental study was performed to discover the tribological behaviors of pure tin and zinc coated 52100 bearing steel. Pure tin coatings ranging from 30 nm to 30,000 nm and pure zinc coatings ranging from 500 nm to 52,000 nm were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed for the investigations of the effect of coating thickness on the tribological rolling behavior. Results showed that the existence of optimum film thickness which revealed minimum rolling resistance was discovered for tin and zinc coating. The compatibility of coating material to iron showed no significant effect on the rolling resistance behavior. The hardness of coating material revealed significant influence to the rolling resistance behavior.

A Basic Study on Blade Coating Process of Piston Skirt by Applying the Technology of Screen Printing - Parametric Study (스크린 프린팅 기술을 적용한 피스톤 스커트의 브레이드 코팅공정에 관한 기초연구 - 매개변수 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.414-420
    • /
    • 2009
  • In this study, using the general expressions predicting the pressure under a blade and the volume of coating fluid passing through the blade edge, it is predicted the change of the coating wet film thickness related with various parameters determining the characteristics of this blade coating process. Using the results of this research, it can be found the optimized coating wet film thickness taking into account the parameters related with various coating process on various metal surfaces will be able to be predicted.

The Effect of Ball-milling Energy on Combustion Synthesis Coating of Cu-Al-Ni Based Intermetallics (Cu-Al-Ni계 금속간화합물의 연소합성 Coating에 미치는 Ball Mill처리의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The possibility of Cu-Al-Ni intermetallic coating on the mild steel through the combustion synthesis has been investigated. In particular, the effect of the ball milling energy on the microstructure of the coating layer was examined to obtain the best coating condition. Experimental results show that Cu-Al-Ni powder compact was explosively synthesized and successfully coated with the steel matrix. It was revealed that the formation of $Cu_9Al_4$ intermetallic decreased with increase in the ball milling energy. This result supports that the high energy ball milling would be effective for obtaining the most suitable microstructure for Cu-Al-Ni coating layer. However, the excessive ball milling energy seems to decrease the bonding strength between the coating layer and the matrix.

Lubrication of Space Systems by Tribo-coating

  • Kato, Koji
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.7-8
    • /
    • 2002
  • It is a time to introduce a concept of lubrication to space systems. Minimum amount of lubricant should be supplied to a contact interface instead of preparing too much lubricant on surfaces of the earth. In situ controllable lubrication method is wanted to overcome unexpected tribo-troubles in space. Tribo-coating, which forms a thin solid film in nm-scale by vacuum deposition during friction, is a promising lubrication method for space.

  • PDF

A Study for Ni-Al based Intermetallics Coating onto Aluminum Substrate by Induction Heating (고주파 유도가열을 통한 알루미늄 기판재위 Ni-Al계 금속간화합물의 연소합성코팅에 관한 연구)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.56-61
    • /
    • 2012
  • In order to investigate the possibility of Ni-Al based intermetallics coating onto aluminum substrate, the coating process for induction heating has been evaluated by microscopically analyzing the intermetallic layers coated at temperatures lower than the melting temperature of aluminum. The coating layers were divided into two parts with different microstructure along the depth. Hard $NiAl_3$ layer was found at lower parts of the coatings near the interface with aluminum substrate. This layer was formed by the diffusion of aluminum atoms from the substrate into the coating layer across the interface during the induction heating. Meanwhile, at the upper parts of the coating near the surface, a large amount of un-reacted Ni was still remained and surrounded by several Ni-Al based intermetallic compounds, such as $Ni_3Al$, NiAl and $Ni_2Al_3$ formed by the lattice diffusion.

A Basic Study on Blade Coating Process of Piston Skirt by Applying the Technology of Screen Printing - Case Study (스크린 프린팅 기술을 적용한 피스톤 스커트의 브레이드 코팅공정에 관한 기초연구 - 사례연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.26 no.2
    • /
    • pp.142-148
    • /
    • 2010
  • The purpose of this study is to find how to be formed the wet film thickness during the low friction coating process for a piston skirt with application to the theory of screen printing. In other words, in this research, it is to derive the general expressions predicting the pressure under a blade and the volume of coating fluid passing through the blade edge. Using these expressions, it is to be approved that the current operation characteristics of a screen printing system to a sample blade coating process for low friction coating on a piston skirt can be quantitatively assessed.

The Wear Mechanism of Carbon(WC/C) Thin Film in Lubricated Contact (WC/C 박막의 윤활접촉하의 마멸기구)

  • Ahn, Hyo-Sok;Kim, Doo-In
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.302-307
    • /
    • 2008
  • The running-in behaviour of the metal carbon coating (WC/C) was evaluated with regard to its applicability as wear-resistant coating for key components in engines. Reciprocating wear tests under lubricated condition employing an oscillating friction wear tester were performed to investigate the tribological behaviors of the coatings in ambient environment. Confocal microscopy and scanning electron microscopy were used to observe worn surfaces and the wear scars on the steel balls. Elemental composition of the coating and worn surfaces were characterized using Auger electron spectroscopy. The friction behavior of WC/C coating was comparable to common carbon-based coatings. Thin tribofilm was formed on the worn surface of the steel ball due to material transfer and tribochemical reaction whereas there was no evidence of tribofilm generation on the coating surface. indicating the chemical innertness of WC/C coating.