• Title/Summary/Keyword: Triazolopyrimidine

Search Result 9, Processing Time 0.024 seconds

Synthesis of Sulfonamide Derivatives as New Herbicidal Compounds and Studies on Biological Activity (새로운 Sulfonamide 유도체의 합성과 Acetolactate Synthase (ALS) 저해)

  • Chae, Jong-Kun;Lee, Jae-Seob;Choi, Jung-Do;Shin, Jung-Hyu
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.99-103
    • /
    • 1998
  • Triazolopyrimidine sulfonanilide (TP) derivative is one of excellent herbicide compounds. We have synthesized three classes of a new sulfonamide derivative (TPP) as Acetolactate synthase (ALS) inhibitors, in which the benzene ring in TP skeleton was converted to substituted pyrimidyl ring and examined their inhibitory activities on barley for ALS. $I_{50}$ values of the inhibitors ranged from 0.005 to 2 mM. Comparing the $I_{50}$ value of each class of TPP derivatives, the substituents in pyrimidine and triazolopyrimidine ring were found to affect the degree of ALS inhibition. TPP with substituted methyl group in pyrimidine ring showed higher inhibitory activity than that with methoxy group, while the substitution of the cyclopentano group in triazolopyrimidine ring gave very large inhibitory activity than that of methyl group. The present study established that variation of the electron density by substitution at heterocyclic ring is a very important factor for ALS inhibition, but showed no dependence on steric effect by substituents.

  • PDF

Interaction of Barley Acetolactate Synthase with Triazolopyrimidine Inhibitors (Triazolopyrimidine계 저해제와 보리 Acetolactate Synthase와의 상호작용)

  • Lee, Jae Soeb;Chang, Soo Ik;Nam Goong, Sung Keon;Shin, Jung Hyu;Choi, Jung Do
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.3
    • /
    • pp.306-314
    • /
    • 1998
  • Acetolactate synthase (ALS) is the common enzyme in the biosynthesis of branched chain amino acids, Val, Leu, and Ile in bacteria, yeast, and higher plants. The enzyme is target site of several classes of structually diverse herbicides, including the sulfonylureas, the imidazolinones, the triazolopyrimidines, and the primidyl-oxy-benzoates. We have synthesized new triazolopyrimidine (TP) derivatives, and determined their inhibitory activities on barley ALS. $lC_{50}$ values for the active compounds were 3.2 nM-0.62 mM, and some of them appeared to be potent inhibitors. The progress curves for inhibition of ALS by TP4, a representative derivative, indicated that the extent of inhibition increased with incubation time. The inhibition of ALS by TP4 showed mixed-type inhibition with respect to pyruvate. Dual inhibition analyses of TP4 versus imidazolinone Cadre and feedback inhibitor Leu suggested that three different classes of inhibitors bind to ALS in a mutually exclusive manner. Chemical modification of tyrosyl residues of ALS decreased sensitivity of ALS to TP4, while modification of tryptophan and cysteine did not affect the sensitivity.

  • PDF

Inhibition of Barley Acetolactate Synthase by Triazolopyrimidine Derivative (트리아졸로피리미딘계 유도체에 의한 보리 Acetolactate Synthase의 저해)

  • Kim, Sung Ho;NamGoong, Sung Keon;Shin, Jung Hyu;Chang, Soo Ik;Choi, Jung Do
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.461-468
    • /
    • 1999
  • Acetolactate synthase (ALS) catalyzes the first common reaction in the biosynthesis of branched-chain amino acids, valine, leucine, and isoleucine. ALS is the common target of several classes of structurally diverse herbicides, the triazolopyrimidines, the imidazolinones, the sulfonylureas, and pyrimidyl-oxy-benzoates. We examined ihibitory activities of newly synthesized triazolopyrimidine sulfonamide derivatives using partially purified ALS from barley. $IC_{50}$ values for the active derivatives are 0.5nM∼8$\mu$M. Among them TP1 and TP2 are the most potent ALS inhibitors with $IC_{50}$ values of 0.5nM and 1.6nM, respectively. These inhibitors are more potent in the inhibition of barley ALS than commercial herbicides, Metosulam ($IC_{50}$;3.6 nM), Flumetsulam ($IC_{50}$;126 nM), and Cadre ($IC_{50};4 {\mu}M$). The progress curves for inhibition of ALS by TP2 showed that the amount of inhibition increases with time. The inhibition of ALS by TP2 was mixed-type inhibition with respect to pyruvate. Dual inhibition analyses of TP2 versus an imidazolinone, Cadre, and Leu showed parallel and intercepting kinetic pattern, respectively. The results suggest that TP2 binds to ALS competively with Cadre but not with Leu. Chemical modification of cysteinly residues in ALS decreased the sensitivity of ALS to Leu, while the modification did not affect the sensitivity of ALS to TP2 and Cadre.

  • PDF

Expression in Escherichia coli, Purification, and Characterization of the Tobacco Sulfonylurea Herbicide-Resistant Recombinant Acetolactate Synthase and Its Interaction with the Triazolopyrimidine Herbicides

  • Kil, Mee-Wha;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.287-295
    • /
    • 1998
  • Acetolactate synthase (ALS) is the first common enzyme in the biosynthesis of L-Ieucine, L-isoleucine, and L-valine. The sulfonylurea-resistant ALS gene from Nicotiana tabacum was cloned into the bacterial expression vector pGEX-2T. The resulting recombinant plasmid pGEX-ALS3 was used to transform Escherichia coli strain XL1-Blue, and the mutant tobacco ALS (mALS) was expressed in the bacteria as a protein fused with glutathione S-transferase (GST). The fusion product GST-mALS was purified in a single step on a glutathione-Sepharose column. ALS activities of 0.9-2.5 ${\mu}mol/min/mg$ protein were observed in the GST-mALS, and the Km values for pyruvate, FAD, and TPP were 10.8-24.1, $(1.9-8.9){\times}10^{-3}$, and 0.14-0.38 mM, respectively. The purified GST-mALS was resistant to both the sulfonylurea and the triazolopyrimidine herbicides, and lost its sensitivity to end products, L-valine and L-leucine. For comparision, the tobacco wild-type recombinant ALS fused with GST, GST-wALS, was also characterized with respect to its pyruvate and cofactor bindings. These results suggest that the purified mutant recombinant tobacco ALS was functionally active, that the mutations resulting in herbicide resistance has affected pyruvate and cofactor bindings," and that the two classes of herbicides interact at a common site on the plant ALS.

  • PDF

Synthesis of Pyrimidines and Heteroannulated Pyrimidine Ring Systems (Pyrimidines과 pyrimidine의 헤테로고리의 합성)

  • Mohammed, F.K.;Badrey, M.G.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.218-229
    • /
    • 2011
  • We have involved the imine compound 1 in condensations with various nitrogenous reagents including hydrazine hydrate to construct differently substituted pyrimidines. One of the pyrimidines so obtained was further subjected to interactions with different reagents such as propionic acid, formic acid, ethyl chloroformate, acdetic anhydride, carbon disulphide, cyanogene bromide, triflauroacetic acid and ethyl chloroacetate which resulted in the formation of annulated heterocyclic systems as pairs of isomers in most cases as a result of Dimroth-type rearrangement.

Expression of Acetohydroxyacid Synthase from Bacillus anthracis and Its Potent Inhibitors

  • Choi, Kyoung-Jae;Pham, Chien Ngoc;Jung, Hoe-Il;Han, Sung-Hwan;Choi, Jung-Do;Kim, Jin-Heung;Yoon, Moon-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1109-1113
    • /
    • 2007
  • Acetohydroxyacid synthase (AHAS, EC 2. 2. 1. 6) is the enzyme that catalyses the first step in the common pathway of the biosynthesis of the branched chain amino acids, valine, leucine and isoleucine. For the first time, the AHAS gene from Bacillus anthracis was cloned into the expression vector pET28a(+), and was expressed in the E. coli strain BL21(DE3). The purified enzyme was checked on 12% SDS-PAGE to be a single band with molecular weight of 65 kDa. The optimum pH and temperature for B. anthracis AHAS was at pH 7.5 and 37 oC, respectively. Kinetic parameters of B. anthracis were as follows: Km for pyruvate, K0.5 for ThDP and Mg2+ was 4.8, 0.28 and 1.16 mM respectively. AHAS from B. anthracis showed strong resistance to three classes of herbicides, Londax (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine). These results indicated that these herbicides could be used in the search for new anti-bacterial drugs.

Study of the Electrochemical Redox Characteristics of Some Triazolopyrimidines

  • Maghraby, A.A. El;Elenien, G.M. Abou;Shehata, K.I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 2007
  • An electrochemical study related to the redox characteristics of Ethyl-3-acetyl-6-methyl-1, 4-diphenyl-4, 3a-dihydro-1, 3, 4-triazolino[3, 4-a] pyrimidine-5-carboxylate ester and its derivatives (1a-f) and (2a-e) in nonaqueous solvents such as 1, 2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (AN), dimethylsulphoxide (DMSO) and tetrahydrofurane (THF) using $0.1\;mol\;dm^{-3}$ tetrabutylammonium perchlorate (TBAP) as a supporting electrolyte at platinum, glassy carbon and gold electrodes, has been performed using cyclic voltammetry (CV). Controlled potential electrolysis (CPE) is also carried out to elucidate the course of different electrochemical reactions through the separation and identification of the intermediates and final electrolysis products. The redox mechanism is suggested and proved. It was found that all the investigated compounds in all solvents are oxidized in a single irreversible one electron donating process following the well known pattern of the EC-mechanism to give a dimer. On the other hand, these compounds are reduced in a single irreversible one electron step to form the anion radical, which is basic enough to proton from the media forming the radical which undergoes tautomerization and then dimerization processes to give also another bis-compound through N-N linkage formation.

Reactions of Pyrimidinonethione Derivatives;Synthesis of 2-Hydrazinopyrimidin-4-one, Pyrimido[1,2-a]-1,2,4-triazine, Triazolo-[1,2-a]pyrimidine, 2-(1-pyrazolo)Pyrimidine and 2-Arylhydrazonopyrimidine Derivatives

  • Attaby, Fawzy-A.;Eldin, Sanaa-M.;Hanafi, Eman-A.Z.
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.620-628
    • /
    • 1997
  • 6-Aryl-5-cyano-4-pyrimidinon-2-thione derivatives 1a-c reacted with ethyl iodide to give the corresponded 2-S-ethylpyrimidin-4-one-derivatives 2a-c. Compounds 2a-c was, in turn, reacted with hydrazine hydrate to give the sulfur free reaction products, 3a-c. These reaction products were taken as the starting materials for the synthesis of several newly synthesized heterocyclic derivatives. Reactions with several halogenated ketones, esters, chloroacetic acid and chloroacetamide give pyrimidotriazines 8,12 and 15 while their reactions with formic acid, acetic acid and carbon disulfide gave the corresponded triazolopyrimidines 17 and 21. The reaction with both acetyl acetone and ethylacetoacetate gave the corresponded 2-$(3^{I},5^{I}-dimethyl-1^{I}-pyrazoly$pyrimidine derivatives 20a-c and 24a-c respectively while the reaction with cinnamonitriles 25a-h afforded the corresponded aryl hydrazopyrimidines 27a-f. The structure of these reaction products were eatablished based on both elemental anlayses and spectral data studies.

  • PDF

Development and Validation of an Analytical Method for Ametoctradin Residue Determination in Domestic Agricultural Commodities by HPLC-PDA (HPLC-PDA를 이용한 국내 유통 농산물 중 ametoctradin 잔류량 분석법 개발 및 검증)

  • Do, Jung-Ah;Kwon, Ji-Eun;Lee, Eun-Mi;Kim, Mi-Ra;Kuk, Ju-Hee;Cho, Yoon-Jae;Kang, Il-Hyun;Kim, Hyung-Su;Kwon, Kisung;Oh, Jae-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.285-292
    • /
    • 2013
  • This study was carried out to validate the safety of ametoctradin residues in agricultural commodities by developing an official analysis method. An analytical method was developed and validated using HPLC-PDA detectors. The samples were extracted with methanol, subsequently partitioned with dichloromethane and purified with florisil column chromatograph using acetone/hexane (30/70, v/v) as solvent. The method was validated by using grape, hulled rice, mandarin, and potato spiked with ametoctradin at 0.05 and 5.0 mg/kg, and pepper at 0.05 and 2.0 mg/kg. Average recoveries were 76-114.8% with relative standard deviation less than 10%, and the limit of detection and limit of quantification were 0.0125 and 0.05 mg/kg, respectively. The result of recoveries and overall coefficient of variation of the laboratory results from Gwangju regional Food and Drug Administration (FDA) and Daejeon regional FDA was accorded with Codex Alimentarius Commission Guideline (CAC/GL 40). Based on these results, this method was found to be appropriate for ametoctradin residue determination and can be used as the official method of analysis.